I need to fit a GAM to a time series of satellite-derived phenology data (EVI) for >1000 bird nests across North America. The GAM looks like this:
EVI ~ s(Day)
This model needs to be fit for each nest in multiple years. After fitting the GAM, I then need to extract the derivatives, which can be used to get the day that spring starts in each year for each nest.
Ideally I'm looking to use the tidyverse and associated packages to fit the GAMs for each nest and year. I'd then like to get the first derivatives for each of those models. Because it is a large data set (>1000 models) it is not feasible to do this manually for each model.
Here's what my code currently looks like:
Libraries:
library(mgcv) # fit the GAM
#devtools::install_github("gavinsimpson/tsgam") # to get the tsgam package
library(tsgam) # fderiv function
library(broom)
library(purrr)
library(dplyr)
The data:
EVI_nest_data <- structure(list(NestID = c(29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L), EVI = c(0.138169287379443, 0.130137123711153,
-0.0601195009642549, -0.0779132303669085, 0.119007158525673,
0.117033941141526, 0.136978681251301, 0.158265630276123, 0.184911987542837,
0.231065902413635, 0.235827030242373, 0.251683925119691, 0.265863073211945,
0.277412608027855, 0.345398904303846, 0.317428566021391, 0.320655922665656,
0.365148248230907, 0.399166432212128, 0.395530495249691, 0.408555574078434,
0.435927001361042, 0.457988839852063, 0.471232773544166, 0.58247300221377,
0.605087946423414, 0.544064641351546, 0.500725747018993, 0.515694326374929,
0.485923371886834, 0.38912851503709, 0.31623640671448, 0.28636661712885,
0.271462878408314, 0.23912601163518, 0.197224334805013, 0.167377596227415,
0.170303445041157, 0.162775515630323, 0.152289159775277, 0.146143190541624,
0.143272897184163, 0.0170566259267385, -0.0873424819202047, -0.144196012046888,
-0.11795840588453, -0.0437522532589144, -0.118758217275182, -0.0788013486245648,
-0.0434666293012519, -0.0889717254033134, -0.109810295597509,
-0.0979433930893343, -0.0695014701966185, -0.0727941935592107,
0.108063747925198, 0.141012203997097, 0.159793182262394, 0.185251199038151,
0.23902484552767, 0.262370361663236, 0.293599986569407, 0.246477967880569,
0.296704046172469, 0.364832264966032, 0.420785721438129, 0.515649782502755,
0.593698231711218, 0.650644713161621, 0.674706677006765, 0.729889909980883,
0.671085933201844, 0.662229259430051, 0.643746778462595, 0.563656149219038,
0.536507484614384, 0.428664251460763, 0.424638792032928, 0.362848516559366,
0.324369518951119, 0.274042768500715, 0.247502038808332, 0.226428461172987,
0.202030863129274, 0.194043008509045, 0.187428703967213, 0.186350861970308,
-0.0928074188360373, -0.103099561812049, -0.0950087816476854,
-0.127951240771348, -0.0731964425185014, -0.0735953543718254,
-0.0652932476052561, -0.0964820023201231, -0.128456548030901,
-0.0850037495489492, -0.0816757287942533, 0.124053320004109,
0.124802331049871, 0.128468679656191, 0.155367754190268, 0.172595885074457,
0.205172943223806, 0.23799608373125, 0.295842860300138, 0.266192953182183,
0.270199769824946, 0.325456419714002, 0.418809304967894, 0.506234342342094,
0.542166135383171, 0.58649224669783, 0.658174584259303, 0.661557382455075,
0.654039879899812, 0.693085389030335, 0.696299881716902, 0.651141604789385,
0.625163715612093, 0.59434641227456, 0.503194751705344, 0.443790310397243,
0.303605088370522, 0.296456522112772, 0.264598759432775, 0.256767949136579,
-0.00863667018730914, 0.148214595688042, 0.148114025527331, 0.10695720310348,
0.10432304150008, 0.0102107446971017, 0.0209462108119467, 0.0558393718493003,
0.0796985741519552, 0.128408104926543, 0.130348038590941, 0.136938002126515,
0.141133158619995, 0.153341970989871, 0.185664318459177, 0.23382350716503,
0.245722848447965, 0.280725297320107, 0.286714030274508, 0.276601788341198,
0.28869983778412, 0.429617203217443, 0.502815791196062, 0.543678558487744,
0.682038767726764, 0.729445506959948, 0.706995443722333, 0.670683864668805,
0.669971709049895, 0.660004448233754, 0.640115328437238, 0.626254974431609,
0.579810816037866, 0.515951459251395, 0.464542503193149, 0.339051097543664,
0.267999691958749, 0.245398744344898, 0.240586210852127, 0.215160040958741,
0.212985817402799, 0.205421003291693, 0.181380695803078, 0.175834408563713,
0.170302397059354, 0.164467173904389, -0.109744618573805, -0.0733910154523134,
-0.0112372603199326, -0.0116968253768986, -0.0389331550649953,
-0.17088254743052, -0.086528257002022, -0.0733364171794435, 0.130873576637048,
0.130287104658728, 0.156918320783852, 0.159137902001007, 0.177169191439639,
0.189077564769396, 0.186854990601556, 0.215065204884061, 0.224908816053833,
0.217477256913988, 0.207297170786867, 0.303227920672108, 0.381783895956506,
0.464210614456201, 0.576500769382467, 0.670887856300319, 0.755035573903038,
0.764883426467366, 0.743177264884881, 0.737057237403139, 0.700476098338919,
0.700830749184085, 0.662841978283046, 0.595808383583464, 0.493852987369538,
0.410896633943903, 0.303427604351243, 0.264082714034867, 0.225571394900212,
0.196407407134823, 0.194864945007588, 0.189049017546347, 0.192064052939134,
0.205793750782993, 0.127459080662136, 0.0228394733374728, 0.000814098239512075,
-0.00703034480699902, 0.026508315098859), Day = c(1L, 9L, 17L,
25L, 41L, 49L, 57L, 65L, 73L, 81L, 89L, 97L, 105L, 113L, 121L,
129L, 137L, 145L, 153L, 161L, 169L, 177L, 185L, 193L, 201L, 209L,
217L, 225L, 233L, 241L, 249L, 257L, 265L, 273L, 281L, 289L, 297L,
305L, 313L, 321L, 329L, 337L, 345L, 353L, 361L, 1L, 9L, 25L,
33L, 41L, 49L, 57L, 65L, 73L, 81L, 89L, 97L, 105L, 113L, 121L,
129L, 137L, 145L, 153L, 161L, 169L, 177L, 185L, 193L, 201L, 209L,
217L, 225L, 233L, 241L, 249L, 257L, 265L, 273L, 281L, 289L, 297L,
305L, 313L, 321L, 329L, 337L, 353L, 361L, 1L, 9L, 17L, 25L, 33L,
41L, 49L, 57L, 65L, 73L, 81L, 89L, 97L, 105L, 113L, 121L, 129L,
137L, 145L, 153L, 161L, 169L, 177L, 185L, 193L, 201L, 209L, 217L,
225L, 233L, 241L, 249L, 257L, 265L, 273L, 281L, 289L, 297L, 321L,
353L, 361L, 1L, 9L, 25L, 33L, 41L, 49L, 57L, 65L, 73L, 81L, 89L,
97L, 105L, 113L, 121L, 129L, 137L, 145L, 153L, 161L, 169L, 177L,
185L, 193L, 201L, 209L, 217L, 225L, 233L, 241L, 249L, 257L, 265L,
273L, 281L, 289L, 297L, 305L, 313L, 321L, 329L, 337L, 345L, 353L,
361L, 1L, 9L, 17L, 25L, 33L, 41L, 57L, 65L, 73L, 81L, 89L, 97L,
105L, 113L, 121L, 129L, 137L, 145L, 153L, 161L, 169L, 177L, 185L,
193L, 201L, 209L, 217L, 225L, 233L, 241L, 249L, 257L, 265L, 273L,
281L, 289L, 297L, 305L, 313L, 321L, 329L, 337L, 345L, 353L, 361L
), Year = c(2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L,
2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L,
2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L,
2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L,
2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L,
2012L, 2012L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L,
2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L,
2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L,
2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L,
2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L,
2013L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L,
2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L,
2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L,
2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2014L,
2014L, 2014L, 2014L, 2014L, 2014L, 2014L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2015L,
2015L, 2015L, 2015L, 2015L, 2015L, 2015L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L, 2016L,
2016L, 2016L, 2016L, 2016L, 2016L, 2016L)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -220L), .Names = c("NestID",
"EVI", "Day", "Year"))
Here I group by each NestID and Year combination, and use do
to fit GAMs to each. The result is a tibble with a new column mod
that contains each model:
by_nest_year <- group_by(EVI_nest_data, NestID, Year)
models <- by_nest_year %>%
do(mod = gam(EVI ~ Day, data = .))
models
This is the part that I'm uncertain how to approach. I created a new data frame for prediction purposes (newd
), then that data frame and the model can be used to get the derivatives. I'm wondering how that can be done with the model's data set that I created above. Maybe by adding a couple lines of code to it? Would I create another column that has newd
's for each NestID/Year, then calculate the derivatives in another column?
# Code adapted from the site below:
#https://www.fromthebottomoftheheap.net/2017/03/21/simultaneous-intervals-for-derivatives-of-smooths/
UNCONDITIONAL <- FALSE # unconditional or conditional on estimating smooth params?
EPS <- 1e-07 # finite difference
# create a new df for prediction and fit the gam for 2012 data:
newd <- with(EVI_nest_data %>% filter(Year==2012), data.frame(Day = seq(1:365)))
m <- gam(EVI ~ s(Day), data = EVI_nest_data)
# extracting derivatives:
fd <- fderiv(m, newdata = newd, eps = EPS, unconditional = UNCONDITIONAL)
fd$deriv$Day$deriv
plot(fd$deriv$Day$deriv)
If I understand you right, you can use this solution :
library(mgcv)
library(tsgam)
library(tidyverse)
my_prediction <- function(data,eps = EPS,unconditional = UNCONDITIONAL){
mod = gam(EVI ~ s(Day), data = data)
days <- tibble(Day = c(1:365))
fd <- fderiv(mod,newdata = days, eps = eps, unconditional = unconditional)
tibble(Day = days$Day,pred = as.numeric(fd$deriv$Day$deriv))
}
UNCONDITIONAL <- FALSE # unconditional or conditional on estimating smooth params?
EPS <- 1e-07 # finite difference
df_model <- EVI_nest_data %>%
nest(-c(NestID,Year)) %>%
mutate(pred = map(data,my_prediction))
df_model %>%
unnest(pred) %>%
ggplot(aes(Day,pred,col = as.factor(Year))) + geom_line() +
theme_bw() +
facet_wrap(c('NestID'))