I have a dataframe df
containing some timestamps
df['Date'].values
Out[16]:
array(['2015-03-25T14:36:39.199994000', '2015-03-25T14:36:39.199994000',
'2015-03-26T10:05:03.699999000', '2015-04-19T16:01:49.680009000',
'2015-04-19T16:36:10.040007000', '2015-04-19T16:36:10.040007000',
'2015-04-19T16:36:10.040007000'], dtype='datetime64[ns]')
As you can see the first and the second timestamps are equal, but also the last 3.
I would like to scan the dataframe and if there are timestamps that are equal, maintain the first and add incrementally 5 seconds to the others that are equal.
The new dataframe should look like
df['Date'].values
Out[16]:
array(['2015-03-25T14:36:39.199994000', '2015-03-25T14:36:44.199994000',
'2015-03-26T10:05:03.699999000', '2015-04-19T16:01:49.680009000',
'2015-04-19T16:36:10.040007000', '2015-04-19T16:36:15.040007000',
'2015-04-19T16:36:20.040007000'], dtype='datetime64[ns]')
Is there a pythonic way to do so without looping. I was thinking to groupby according to the timestamps, but then I don't know how to proceed...
Use groupby cumcount times the timedelta i.e
df = pd.DataFrame({'Date':np.array(['2015-03-25T14:36:39.199994000', '2015-03-25T14:36:39.199994000',
'2015-03-26T10:05:03.699999000', '2015-04-19T16:01:49.680009000',
'2015-04-19T16:36:10.040007000', '2015-04-19T16:36:10.040007000',
'2015-04-19T16:36:10.040007000'], dtype='datetime64[ns]')})
df['Date'] + df.groupby(df['Date']).cumcount()*pd.Timedelta('5 seconds')
Output :
0 2015-03-25 14:36:39.199994 1 2015-03-25 14:36:44.199994 2 2015-03-26 10:05:03.699999 3 2015-04-19 16:01:49.680009 4 2015-04-19 16:36:10.040007 5 2015-04-19 16:36:15.040007 6 2015-04-19 16:36:20.040007 dtype: datetime64[ns]