Haskell allows to represent recurrent functions in a very concise way. For example, infinite list, that contains Fibonacci numbers can be defined as follows:
fibs :: [Integer]
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
I am dealing with 'probabilists' Hermite polynomials, which have the following recursion relation:
What would be the optimal way to construct the infinite list of n-th Hermite polynomials for given x?
We can write it as:
hermite :: (Enum n, Num n) => n -> [n]
hermite x = s
where s@(_:ts) = 1 : x : zipWith3 (\hn2 hn1 n1 -> x*hn1 - n1*hn2) s ts [1..]
where the first items 1 : x : ...
are the first elements of the hermite
(you can fill in other values).
For the next one, we zip the original values s
(so that starts with H0
), the tail ts
of s
(that starts with H1
) and the index (that starts with 2
, 3
, ...) and perform an operation x*hn1 - x*hn2
(nh1
stands for Hn-1, and nh2
stands for Hn-2), and so we calculate the next element each time.
The first 11 values for x = 0.75
are:
Prelude> take 11 (hermite 0.75)
[1.0,0.75,-0.4375,-1.828125,-5.859375e-2,7.2685546875,5.744384765625,-39.30303955078125,-69.68797302246094,262.1583366394043,823.8105096817017]
So the first value is 1, the second x
, the third one x*x-2
, the fourth one x*x*x-2*x-3*x
, and so on.
That being said, if I recall correctly, the recursion formula of the Hermite polynomials is:
Hn(x) = 2×x×Hn-1(x)-2×(n-1)Hn-2(x)
instead of the one quoted in the question.
In that case the formula is thus:
hermite :: (Enum n, Num n) => n -> [n]
hermite x = s
where s@(_:ts) = 1 : 2 * x : zipWith3 helper s ts [1..]
helper hn2 hn1 n1 = 2 * (x * hn1 - n1 * hn2)
Then the first 11 values are:
Prelude> take 11 (hermite 0.75)
[1.0,1.5,0.25,-5.625,-9.9375,30.09375,144.515625,-144.3515625,-2239.74609375,-1049.994140625,38740.4384765625]
Which is correct acording to this Wolfram article:
H0 = 1
H1 = 2*x
H2 = 4˙x2 - 2
H3 = 8˙x3 - 4˙x
H4 = 16˙x4 - 48˙x2 + 12
Which maps exactly on the values we obtained:
Prelude> let x = 0.75 in [1,2*x,4*x*x-2,8*x*x*x-4*x,16*x*x*x*x-48*x*x+12]
[1.0,1.5,0.25,0.375,-9.9375]