apache-sparkperformance-measuring

Get same value for precision, recall and F score in Apache Spark Logistic regression algorithm


I have implemented a logistic regression for a classification problem. I get the same value for precision, recall and F1 score. Is it ok to have the same value? I also got this problem in implementing decision trees and random forest. There also I got same value for precision, recall and F1 score.

// Run training algorithm to build the model.
        final LogisticRegressionModel model = new LogisticRegressionWithLBFGS()
                .setNumClasses(13).
                run(data.rdd());
//Compute raw scores on the test set.
        JavaRDD<Tuple2<Object, Object>> predictionAndLabels = testData.map(
                new Function<LabeledPoint, Tuple2<Object, Object>>() {
                    public Tuple2<Object, Object> call(LabeledPoint p) {
                        Double prediction = model.predict(p.features());
                        return new Tuple2<Object, Object>(prediction, p.label());
                    }
                }
        );
// Get evaluation metrics.
        MulticlassMetrics metrics = new MulticlassMetrics(predictionAndLabels.rdd());
        double precision = metrics.precision();
        System.out.println("Precision = " + precision);

        double recall = metrics.recall();
        System.out.println("Recall = " + recall);

        double FScore = metrics.fMeasure();
        System.out.println("F Measure = " + FScore);

Solution

  • I am also facing the same problem. I have tried decision tree, random forest and GBT. Every time, I get the same precision, recall and F1 score. The accuracy is also the same (calculated through confusion matrix).

    So, I am using my own formulas and written code to get the accuracy, precision, recall, and F1 score measures.

    from pyspark.ml.classification import RandomForestClassifier
    from pyspark.mllib.evaluation import MulticlassMetrics
    
    #generate model on splited dataset
    rf = RandomForestClassifier(labelCol='label', featuresCol='features')
    fit = rf.fit(trainingData)
    transformed = fit.transform(testData)
    
    results = transformed.select(['prediction', 'label'])
    predictionAndLabels=results.rdd
    metrics = MulticlassMetrics(predictionAndLabels)
    
    cm=metrics.confusionMatrix().toArray()
    accuracy=(cm[0][0]+cm[1][1])/cm.sum()
    precision=(cm[0][0])/(cm[0][0]+cm[1][0])
    recall=(cm[0][0])/(cm[0][0]+cm[0][1])`
    print("RandomForestClassifier: accuracy,precision,recall",accuracy,precision,recall)