I'm using the scikit-learn method MDS to perform a dimensionality reduction in some data. I would like to check the stress value to access the quality of the reduction. I was expecting something between 0 - 1. However, I got values outside this range. Here's a minimal example:
%matplotlib inline
from sklearn.preprocessing import normalize
from sklearn import manifold
from matplotlib import pyplot as plt
from matplotlib.lines import Line2D
import numpy
def similarity_measure(vec1, vec2):
vec1_x = numpy.arctan2(vec1[1], vec1[0])
vec2_x = numpy.arctan2(vec2[1], vec2[0])
vec1_y = numpy.sqrt(numpy.sum(vec1[0] * vec1[0] + vec1[1] * vec1[1]))
vec2_y = numpy.sqrt(numpy.sum(vec2[0] * vec2[0] + vec2[1] * vec2[1]))
dot = numpy.sum(vec1_x * vec2_x + vec1_y * vec2_y)
mag1 = numpy.sqrt(numpy.sum(vec1_x * vec1_x + vec1_y * vec1_y))
mag2 = numpy.sqrt(numpy.sum(vec2_x * vec2_x + vec2_y * vec2_y))
return dot / (mag1 * mag2)
plt.figure(figsize=(15, 15))
delta = numpy.zeros((100, 100))
data_x = numpy.random.randint(0, 100, (100, 100))
data_y = numpy.random.randint(0, 100, (100, 100))
for j in range(100):
for k in range(100):
if j <= k:
dist = similarity_measure((data_x[j].flatten(), data_y[j].flatten()), (data_x[k].flatten(), data_y[k].flatten()))
delta[j, k] = delta[k, j] = dist
delta = 1-((delta+1)/2)
delta /= numpy.max(delta)
mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=0,
dissimilarity="precomputed", n_jobs=1)
coords = mds.fit(delta).embedding_
print mds.stress_
plt.scatter(coords[:, 0], coords[:, 1], marker='x', s=50, edgecolor='None')
plt.tight_layout()
Which, in my test, printed the following:
263.412196461
And produced this image:
How can I analyze this value, without knowing the maximum value? Or how to normalize it, to have it between 0 and 1?
Thank you.
It is because current scikit-learn's implementation computes and returns raw Stress value (σr) while you are expecting Stress-1 (σ1).
The former is not very informative (its high value does not necessarily indicate bad fit), and a better way of communicating reliability is to calculate a normed stress, eg. Stress-1 that according to Kruskal (1964, p. 3) has more or less the following interpretation: value 0 indicates perfect fit, 0.025 excellent, 0.05 good, 0.1 fair and 0.2 poor.
I just implemented calculation of Stress-1 and sent PR. In the meantime one can use version from this branch, where Stress-1 is used and returned instead of raw Stress when normalize parameter is set to True (False by default).
For more information cf. Kruskal (1964, p. 8-9) or Borg and Groenen (2005, p. 41-43).