I am trying to understand what will be the result of performing a natural join between two relations R and S, where they have no common attributes.
By following the below definition, I thought the answer might be an empty set:
Natural Join definition.
My line of thought was because the condition in the 'Select' symbol is not met, the projection of all of the attributes won't take place.
When I asked my lecturer about this, he said that the output will be the same as doing a cartezian product between R and S.
I can't seem to understand why, would appreciate any help )
Natural join combines a cross product and a selection into one operation. It performs a selection forcing equality on those attributes that appear in both relation schemes. Duplicates are removed as in all relation operations.
There are two special cases:
• If the two relations have no attributes in common, then their natural join is simply their cross product.
• If the two relations have more than one attribute in common, then the natural join selects only the rows where all pairs of matching attributes match.
Notation: r s
Let r and s be relation instances on schema R and S
respectively.
The result is a relation on schema R ∪ S which is
obtained by considering each pair of tuples tr from r and ts from s.
If tr and ts have the same value on each of the attributes in R ∩ S, a
tuple t is added to the result, where
– t has the same value as tr on r
– t has the same value as ts on s
Example:
R = (A, B, C, D)
S = (E, B, D)
Result schema = (A, B, C, D, E)
r s is defined as:
πr.A, r.B, r.C, r.D, s.E (σr.B = s.B r.D = s.D (r x s))