On Linux, I would like to store some structures in a custom .note.foobar
section and discover them at runtime.
I compile and link the program below once with gold
and once without:
$ gcc -o test-ld test.c
$ gcc -o test-gold -fuse-ld=gold test.c
You can see that the ld
-linked version finds the section while the gold
-linked version does not:
$ ./test-ld
note section at vaddr: 2c4
note section at vaddr: 2f0
found f00dface
note section at vaddr: 324
note section at vaddr: 7a8
note section at vaddr: 270
note section at vaddr: 1c8
$ ./test-gold
note section at vaddr: 254
note section at vaddr: 7a8
note section at vaddr: 270
note section at vaddr: 1c8
However, the section does exist in both binaries:
$ readelf -x .note.foobar test-ld
Hex dump of section '.note.foobar':
0x000002f0 04000000 14000000 67452301 666f6f00 ........gE#.foo.
0x00000300 cefa0df0 00000000 00000000 00000000 ................
0x00000310 04000000 14000000 67452301 666f6f00 ........gE#.foo.
0x00000320 efbeadde ....
$ readelf -x .note.foobar test-gold
Hex dump of section '.note.foobar':
0x00000280 04000000 14000000 67452301 666f6f00 ........gE#.foo.
0x00000290 cefa0df0 00000000 00000000 00000000 ................
0x000002a0 04000000 14000000 67452301 666f6f00 ........gE#.foo.
0x000002b0 efbeadde ....
So you would expect the test-gold
program to report a section at vaddr 280, but it does not.
Why can dl_iterate_phdr
not find this section, while readelf
can, and what is gold
doing differently to cause this?
#define _GNU_SOURCE
#include <link.h>
#include <stdlib.h>
#include <stdio.h>
typedef struct {
unsigned int elf_namesize;
unsigned int elf_datasize;
unsigned int elf_type;
unsigned int elf_name;
unsigned int bar;
} foo_t;
const foo_t __attribute__((used,section(".note.foobar,\"a\"#"))) foo1 = {
4,
20,
0x01234567,
0x6f6f66,
0xf00dface,
};
const foo_t __attribute__((used,section(".note.foobar,\"a\"#"))) foo2 = {
4,
20,
0x01234567,
0x6f6f66,
0xdeadbeef,
};
static int
callback(struct dl_phdr_info *info, size_t size, void *data)
{
for (int i = 0; i < info->dlpi_phnum; i++) {
const ElfW(Phdr)* phdr = &info->dlpi_phdr[i];
if (phdr->p_type == PT_NOTE) {
foo_t *payload = (foo_t*)(info->dlpi_addr + phdr->p_vaddr);
printf("note section at vaddr: %lx\n", phdr->p_vaddr);
if (phdr->p_memsz >= sizeof(foo_t) && payload->elf_type == 0x01234567 && payload->elf_name == 0x6f6f66) {
printf("found %x\n", payload->bar);
}
}
}
return 0;
}
int
main(int argc, char *argv[])
{
dl_iterate_phdr(callback, NULL);
return 0;
}
This code:
foo_t *payload = (foo_t*)(info->dlpi_addr + phdr->p_vaddr);
assumes that your .note.foobar
is the very first Elf...Note
in the PT_NOTE
segment, but you can't make that assumption -- the order of notes in PT_NOTE
is not guaranteed; you need to iterate over all of them.
You can verify that there are multiple notes with readelf -n test-{ld,gold}
.
It appears that GNU-ld emits a separate PT_NOTE
for each .note*
section, while Gold merges them all into a single PT_NOTE
segment. Either behavior is perfectly fine as far as ELF standard is concerned, though GNU-ld is wasteful (there is no need to emit extra PT_NOTE
program headers).
Here is what I get for your test program:
readelf -l test-ld | grep NOTE
NOTE 0x00000000000002c4 0x00000000004002c4 0x00000000004002c4
NOTE 0x00000000000002f0 0x00000000004002f0 0x00000000004002f0
NOTE 0x0000000000000324 0x0000000000400324 0x0000000000400324
readelf -l test-gold | grep NOTE
NOTE 0x0000000000000254 0x0000000000400254 0x0000000000400254
P.S.
Why does the gold linker cause dl_iterate_phdr() not to return my custom note section?
The direct answer is that dl_iterate_phdr
doesn't deal with (or care) about sections. It iterates over segments, and assignment of sections to segments is up for linkers to perform as they see fit.