I create a dataframe df.
df <- data.frame (id = 1:10,
var1 = 10:19,
var2 = sample(c(1:2,NA), 10, replace=T),
var3 = sample(c(3:5, NA), 10, replace=T))
What I need is a new column var4, which count the number of non-NA values of each row (excluding the id column). So for example, if a row is like var1=19, var2=1, var3=NA, then var4=2. I could not find a good way to do this in dplyr. something like:
df %in% mutate(var4= ... )
I appreciate if anyone can help me with that.
Use select
+ is.na
+ rowSums
, select(., -id)
returns the original data frame (.
) with id
excluded, and then count number of non-NA values with rowSums(!is.na(...))
:
df %>% mutate(var4 = rowSums(!is.na(select(., -id))))
# id var1 var2 var3 var4
#1 1 10 NA 4 2
#2 2 11 1 NA 2
#3 3 12 2 5 3
#4 4 13 2 NA 2
#5 5 14 1 NA 2
#6 6 15 1 NA 2
#7 7 16 1 5 3
#8 8 17 NA 4 2
#9 9 18 NA 4 2
#10 10 19 NA NA 1