I'm working on neighbor discovery protocols in wireless ad-hoc networks. There are many protocols that rely only on beacon messages between nodes when the discovery phase is going on. On the other hand, there are other approaches that try to transmit more information (like a node's neighbor table) during the discovery, in order to accelerate it. Depending on the time needed to listen to those messages the discovery latency and power consumption varies. Suppose that the same hardware is used to transmit them and that there aren't collisions.
I read that beacons can be sent extremely fast (less than 1ms easily) but I haven't found anything about how long it takes to send/receive a bigger message. Let say a message carrying around 50-500 numbers representing all the info about your neighbors. How much extra power is needed?
Update
Can this bigger message be divided into a bunch of beacon size messages? If it does, then I suppose the power used to transmit/listen grows linearly.
One possible solution is to divide the transmission in N different beacon-like messages with a small extra information to be able to put them back together. In this way, the power used grows linearly as N grows.