pythonopencvimage-processingconnected-components

Use cv2.connectedComponents and eliminate elements with a small number of pixels


I want to use the function cv2.connectedComponents to connect components on a binary image, like the following...

enter image description here

I have added the feature to cv2. connectedComponents to eliminate elements with a small number of pixels.

Unfortunately, the algorithm is extremely slow for large images due to the extension. Is there a way to rewrite the extension to speed up the algorithm?

import cv2
import numpy as np

def zerolistmaker(n):
    listofzeros = [0] * n
    return listofzeros


img = cv2.imread('files/motorway/gabor/eGaIy.jpg', 0)

img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)[1]  # ensure binary
retval, labels = cv2.connectedComponents(img)

##################################################
# ENLARGEMENT
##################################################
sorted_labels = labels.ravel()
sorted_labels = np.sort(sorted_labels)


maxPixel = 50  # eliminate elements with less than maxPixel

# detect how often an element occurs
i=0
counter=0
counterlist = zerolistmaker(retval)

while i < len(sorted_labels):
    if sorted_labels[i] == counter:
        counterlist[counter] = counterlist[counter] + 1
    else:
        counter = counter + 1
        i = i - 1

    i = i + 1


# delete small pixel values
i=0
while i < len(counterlist):
    if counterlist[i] < maxPixel:
        counterlist[i] = 0
    i = i + 1

i=0
counterlisthelper = []
while i < len(counterlist):
    if counterlist[i] == 0:
        counterlisthelper.append(i)
    i = i + 1

i=0
j=0
k=0
while k < len(counterlisthelper):
    while i < labels.shape[0]:
        while j < labels.shape[1]:
            if labels[i,j] == counterlisthelper[k]:
                labels[i,j] = 0
            else:
                labels[i,j] = labels[i,j]
            j = j + 1
        j = 0
        i = i + 1
    i = 0
    j = 0
    k = k + 1

##################################################
##################################################

# Map component labels to hue val
label_hue = np.uint8(179*labels/np.max(labels))
blank_ch = 255*np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])

# cvt to BGR for display
labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)

# set bg label to black
labeled_img[label_hue==0] = 0

cv2.imshow('labeled.png', labeled_img)
cv2.waitKey()

Solution

  • In python, you should avoid deep loop. Prefer to use numpy other than python-loop.

    Imporved:

    ##################################################
    ts = time.time()
    num = labels.max()
    
    N = 50
    
    ## If the count of pixels less than a threshold, then set pixels to `0`.
    for i in range(1, num+1):
        pts =  np.where(labels == i)
        if len(pts[0]) < N:
            labels[pts] = 0
    
    print("Time passed: {:.3f} ms".format(1000*(time.time()-ts)))
    # Time passed: 4.607 ms
    
    ##################################################
    

    Result:

    enter image description here enter image description here


    The whole code:

    #!/usr/bin/python3
    # 2018.01.17 22:36:20 CST
    import cv2
    import numpy as np
    import time
    
    img = cv2.imread('test.jpg', 0)
    img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)[1]  # ensure binary
    retval, labels = cv2.connectedComponents(img)
    
    ##################################################
    ts = time.time()
    num = labels.max()
    
    N = 50
    for i in range(1, num+1):
        pts =  np.where(labels == i)
        if len(pts[0]) < N:
            labels[pts] = 0
    
    print("Time passed: {:.3f} ms".format(1000*(time.time()-ts)))
    # Time passed: 4.607 ms
    
    ##################################################
    
    # Map component labels to hue val
    label_hue = np.uint8(179*labels/np.max(labels))
    blank_ch = 255*np.ones_like(label_hue)
    labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])
    
    # cvt to BGR for display
    labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)
    
    # set bg label to black
    labeled_img[label_hue==0] = 0
    
    cv2.imshow('labeled.png', labeled_img)
    cv2.imwrite("labeled.png", labeled_img)
    cv2.waitKey()