I'm using two Scala libraries that both rely on implicit parameters to supply codecs/marshallers for case classes (the libraries in question are msgpack4s and op-rabbit). A simplified example follows:
sealed abstract trait Event
case class SomeEvent(msg: String) extends Event
case class OtherEvent(code: String) extends Event
// Assume library1 needs Show and library2 needs Printer
trait Show[A] { def show(a: A): String }
trait Printer[A] { def printIt(a: A): Unit }
object ShowInstances {
implicit val showSomeEvent = new Show[SomeEvent] {
override def show(a: SomeEvent) =
s"SomeEvent: ${a.msg}"
}
implicit val showOtherEvent = new Show[OtherEvent] {
override def show(a: OtherEvent) =
s"OtherEvent: ${a.code}"
}
}
The Printer for the one library can be generic provided there's an implicit Show for the other library available:
object PrinterInstances {
implicit def somePrinter[A: Show]: Printer[A] = new Printer[A] {
override def printIt(a: A): Unit =
println(implicitly[Show[A]].show(a))
}
}
I want to provide an API that abstracts over the details of the underlying libraries - callers should only need to pass the case class, internally to the API implementation the relevant implicits should be summoned.
object EventHandler {
private def printEvent[A <: Event](a: A)(implicit printer: Printer[A]): Unit = {
print("Handling event: ")
printer.printIt(a)
}
def handle(a: Event): Unit = {
import ShowInstances._
import PrinterInstances._
// I'd like to do this:
//EventHandler.printEvent(a)
// but I have to do this
a match {
case s: SomeEvent => EventHandler.printEvent(s)
case o: OtherEvent => EventHandler.printEvent(o)
}
}
}
The comments in EventHandler.handle() method indicate my issue - is there a way to have the compiler select the right implicits for me?.
I suspect the answer is no because at compile time the compiler doesn't know which subclass of Event handle() will receive, but I wanted to see if there's another way. In my actual code, I control & can change the PrinterInstances code, but I can't change the signature of the printEvent method (that's provided by one of the libraries)
*EDIT: I think this is the same as Provide implicits for all subtypes of sealed type. The answer there is nearly 2 years old, I'm wondering if it's still the best approach?
You have to do the pattern matching somewhere. Do it in the Show
instance:
implicit val showEvent = new Show[Event] {
def show(a: Event) = a match {
case SomeEvent(msg) => s"SomeEvent: $msg"
case OtherEvent(code) => s"OtherEvent: $code"
}
}
If you absolutely need individual instances for SomeEvent
and OtherEvent
, you can provide them in a different object so they can be imported separately.
If Show
is defined to be contravariant (i.e. as trait Show[-A] { ... }
, with a minus on the generic type) then everything works out of the box and a Show[Event]
is usable as a Show[SomeEvent]
(and as a Show[OtherEvent]
for that matter).
If Show
is unfortunately not written to be contravariant, then we might have to do a little bit more juggling on our end than we'd like. One thing we can do is declare all of our SomeEvent
values as simply Event
s, vis a vis val fooEvent: Event = SomeEvent("foo")
. Then fooEvent
will be showable.
In a more extreme version of the above trick, we can actually hide our inheritance hierarchy:
sealed trait Event {
def fold[X]( withSomeEvent: String => X,
withOtherEvent: String => X ): X
}
object Event {
private case class SomeEvent(msg: String) extends Event {
def fold[X]( withSomeEvent: String => X,
withOtherEvent: String => X ): X = withSomeEvent(msg)
}
private case class OtherEvent(code: String) extends Event {
def fold[X]( withSomeEvent: String => X,
withOtherEvent: String => X ): X = withOtherEvent(code)
}
def someEvent(msg: String): Event = SomeEvent(msg)
def otherEvent(code: String): Event = OtherEvent(code)
}
Event.someEvent
and Event.otherEvent
allow us to construct values, and fold
allows us to pattern match.