I am trying to solve the age-old problem of adding a sequence number to a data set. I am working with DataFrames, and there appears to be no DataFrame equivalent to RDD.zipWithIndex
. On the other hand, the following works more or less the way I want it to:
val origDF = sqlContext.load(...)
val seqDF= sqlContext.createDataFrame(
origDF.rdd.zipWithIndex.map(ln => Row.fromSeq(Seq(ln._2) ++ ln._1.toSeq)),
StructType(Array(StructField("seq", LongType, false)) ++ origDF.schema.fields)
)
In my actual application, origDF won't be loaded directly out of a file -- it is going to be created by joining 2-3 other DataFrames together and will contain upwards of 100 million rows.
Is there a better way to do this? What can I do to optimize it?
Since Spark 1.6 there is a function called monotonically_increasing_id()
It generates a new column with unique 64-bit monotonic index for each row
But it isn't consequential, each partition starts a new range, so we must calculate each partition offset before using it.
Trying to provide an "rdd-free" solution, I ended up with some collect(), but it only collects offsets, one value per partition, so it will not cause OOM
def zipWithIndex(df: DataFrame, offset: Long = 1, indexName: String = "index") = {
val dfWithPartitionId = df.withColumn("partition_id", spark_partition_id()).withColumn("inc_id", monotonically_increasing_id())
val partitionOffsets = dfWithPartitionId
.groupBy("partition_id")
.agg(count(lit(1)) as "cnt", first("inc_id") as "inc_id")
.orderBy("partition_id")
.select(sum("cnt").over(Window.orderBy("partition_id")) - col("cnt") - col("inc_id") + lit(offset) as "cnt" )
.collect()
.map(_.getLong(0))
.toArray
dfWithPartitionId
.withColumn("partition_offset", udf((partitionId: Int) => partitionOffsets(partitionId), LongType)(col("partition_id")))
.withColumn(indexName, col("partition_offset") + col("inc_id"))
.drop("partition_id", "partition_offset", "inc_id")
}
This solution doesn't repack the original rows and doesn't repartition the original huge dataframe, so it is quite fast in real world:
200GB of CSV data (43 million rows with 150 columns) read, indexed and packed to parquet in 2 minutes on 240 cores
After testing my solution, I have run Kirk Broadhurst's solution and it was 20 seconds slower
You may want or not want to use dfWithPartitionId.cache()
, depends on task