I am writing a custom function that does linear mixed-effects model for each element of a list with the help of purrr::map
. The code block works perfectly fine, but when I turn it into a custom function, it's not clear how I should enter the arguments that correspond to individual columns from list elements.
If I get the custom function working, I can use it for as many as variables as I want. Otherwise, I'll have to keep copy-pasting the same code for different variables.
# libraries needed
library(purrr)
library(lmerTest)
data(mtcars)
# create a list of dataframes from mtcars based on a split
group_list <- split(mtcars, mtcars$am)
# goal: to do linear mixed effects model for each dataframe and combining the results neatly in a dataframe
# achieving this outside of a custom function
group_list %>%
purrr::map(.x = (.),
.f = ~ lmerTest::lmer(
scale(mpg) ~ scale(wt) + (wt | cyl),
data = (.),
REML = FALSE
)) %>%
purrr::map(.f = ~ coef(summary(.))[-c(1),]) %>%
base::do.call(what = cbind.data.frame, args = .) %>%
tibble::rownames_to_column(df = ., var = "Effect")
#> Effect 0 1
#> 1 Estimate -0.3318711 -9.089148e-01
#> 2 Std. Error 0.2104268 1.156500e-01
#> 3 df 0.6084658 1.300000e+01
#> 4 t value -1.5771334 -7.859187e+00
#> 5 Pr(>|t|) 0.4558206 2.714599e-06
# preparing the custom function to do the same
lmer_group <- function(list, x, y) {
list %>%
purrr::map(
.x = (.),
.f = ~ lmerTest::lmer(
scale(y) ~ scale(x) + (x | cyl),
data = (.),
REML = FALSE
)
) %>%
purrr::map(.f = ~ coef(summary(.))[-c(1),]) %>%
base::do.call(what = cbind.data.frame, args = .) %>%
tibble::rownames_to_column(df = ., var = "Effect")
}
# doing the same analysis with a custom function
lmer_group(list = group_list, x = wt, y = mpg) # attempt 1
#> Error in scale(y): object 'mpg' not found
lmer_group(list = group_list, x = 'wt', y = 'mpg') # attempt 2
#> Error in colMeans(x, na.rm = TRUE): 'x' must be numeric
lmer_group(
list = group_list,
x = lapply(group_list, `[`, 'wt'),
y = lapply(group_list, `[`, 'mpg')
) # attempt 3
#> Error in colMeans(x, na.rm = TRUE): 'x' must be numeric
Created on 2018-01-28 by the reprex package (v0.1.1.9000).
All the indirection occurs within the formula, so now I don't think rlang is needed at all.
You can pass the strings of the desired variables, and paste them together as a string of the lmer function. Then use stats::as.formula()
to convert it to a proper formula for lmer's sake.
lmer_group <- function(l, x_name, y_name) {
fx <- paste0("scale(", y_name, ") ~ scale(", x_name, ") + (", x_name," | cyl)")
print(paste("Evaluating: ", fx))
l %>%
purrr::map(
.f = ~ lmerTest::lmer(
as.formula(fx),
data = (.),
REML = FALSE
)
) %>%
purrr::map(.f = ~ coef(summary(.))[-c(1),]) %>%
base::do.call(what = cbind.data.frame, args = .) %>%
tibble::rownames_to_column(df = ., var = "Effect")
}
lmer_group(l = group_list, x = 'wt', y = 'mpg') # attempt 2
results:
[1] "Evaluating: scale(mpg) ~ scale(wt) + (wt | cyl)"
Effect 0 1
1 Estimate -0.3318712 -9.089148e-01
2 Std. Error 0.2104267 1.156500e-01
3 df 0.6084632 1.300000e+01
4 t value -1.5771343 -7.859187e+00
5 Pr(>|t|) 0.4558213 2.714599e-06
I bet there's an rlang approach with quo()
. If you take this solution, it's essentially a duplicate of Formula with dynamic number of variables.