I have implemented two functions FFT and InverseFFT in recursive mode.
These are the functions:
def rfft(a):
n = a.size
if n == 1:
return a
i = 1j
w_n = e ** (-2 * i * pi / float(n))
w = 1
a_0 = np.zeros(int(math.ceil(n / 2.0)), dtype=np.complex_)
a_1 = np.zeros(n / 2, dtype=np.complex_)
for index in range(0, n):
if index % 2 == 0:
a_0[index / 2] = a[index]
else:
a_1[index / 2] = a[index]
y_0 = rfft(a_0)
y_1 = rfft(a_1)
y = np.zeros(n, dtype=np.complex_)
for k in range(0, n / 2):
y[k] = y_0[k] + w * y_1[k]
y[k + n / 2] = y_0[k] - w * y_1[k]
w = w * w_n
return y
def rifft(y):
n = y.size
if n == 1:
return y
i = 1j
w_n = e ** (2 * i * pi / float(n))
w = 1
y_0 = np.zeros(int(math.ceil(n / 2.0)), dtype=np.complex_)
y_1 = np.zeros(n / 2, dtype=np.complex_)
for index in range(0, n):
if index % 2 == 0:
y_0[index / 2] = y[index]
else:
y_1[index / 2] = y[index]
a_0 = rifft(y_0)
a_1 = rifft(y_1)
a = np.zeros(n, dtype=np.complex_)
for k in range(0, n / 2):
a[k] = (a_0[k] + w * a_1[k]) / n
a[k + n / 2] = (a_0[k] - w * a_1[k]) / n
w = w * w_n
return a
Based on the definition of IFFT, converting FFT function to IFFT function can be done by changing 2*i*pi
to -2*i*pi
and dividing the result by N
. The rfft()
function works fine but the rifft()
function, after these modifications, does not work.
I compare the output of my functions with scipy.fftpack.fft
and scipy.fftpack.ifft
functions.
I feed the following NumPy array:
a = np.array([1, 0, -1, 3, 0, 0, 0, 0])
The following box shows the results of rfft()
function and scipy.fftpack.fft
function.
//rfft(a)
[ 3.00000000+0.j -1.12132034-1.12132034j 2.00000000+3.j 3.12132034-3.12132034j -3.00000000+0.j 3.12132034+3.12132034j 2.00000000-3.j -1.12132034+1.12132034j]
//scipy.fftpack.fft(a)
[ 3.00000000+0.j -1.12132034-1.12132034j 2.00000000+3.j 3.12132034-3.12132034j -3.00000000+0.j 3.12132034+3.12132034j 2.00000000-3.j -1.12132034+1.12132034j]
And this box shows the results of rifft()
function and scipy.fftpack.ifft
function.
//rifft(a)
[ 0.04687500+0.j -0.01752063+0.01752063j 0.03125000-0.046875j 0.04877063+0.04877063j -0.04687500+0.j 0.04877063-0.04877063j 0.03125000+0.046875j -0.01752063-0.01752063j]
//scipy.fftpack.ifft(a)
[ 0.37500000+0.j -0.14016504+0.14016504j 0.25000000-0.375j 0.39016504+0.39016504j -0.37500000+0.j 0.39016504-0.39016504j 0.25000000+0.375j -0.14016504-0.14016504j]
The division by the size N
is a global scaling factor and should be performed on the result of the recursion rather than dividing at each stage of the recursion as you have done (by a decreasing factor as you go deeper in the recursion; overall scaling down the result too much). You could address this by removing the / n
factor in the final loop of your original implementation, which gets called by another function performing the scaling:
def unscaledrifft(y):
...
for k in range(0, n / 2):
a[k] = (a_0[k] + w * a_1[k])
a[k + n / 2] = (a_0[k] - w * a_1[k])
w = w * w_n
return a
def rifft(y):
return unscaledrifft(y)/y.size
Alternatively, since you are performing a radix-2 FFT, the global factor N
would be a power of 2 such that N=2**n
, where n
is the number of steps in the recursion. You could thus divide by 2 at each stage of the recursion to achieve the same result:
def rifft(y):
...
for k in range(0, n / 2):
a[k] = (a_0[k] + w * a_1[k]) / 2
a[k + n / 2] = (a_0[k] - w * a_1[k]) / 2
w = w * w_n
return a