I try SOM maps and clustering in R. I use this tutorial : https://www.r-bloggers.com/self-organising-maps-for-customer-segmentation-using-r/ ... SOM maps work fine, but when I try clustering this error :
> mydata <- som_model$codes
> wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var))
Error in apply(mydata, 2, var) : dim(X) must have a positive length.
My code :
require(kohonen)
data = matrix(
c(6, 6, 80, 280, 404, 0, 158, 158197, 158197233,
6, 13, 85, 280, 402, 0, 160, 160197, 160197233,
6, 13, 81, 283, 400, 0, 160, 160197, 160197233),
nrow=3,
ncol=9,
byrow = TRUE)
data_train <- data[, c(1,2,4,5,7,8,9)]
data_train_matrix <- as.matrix(scale(data_train))
som_grid <- somgrid(xdim = 2, ydim=1, topo="hexagonal")
som_model <- som(data_train_matrix,
grid=som_grid,
rlen=500,
alpha=c(0.05,0.01),
keep.data = TRUE )
#training proces
plot(som_model, type="changes")
#nodes
plot(som_model, type="count", main="Node Counts")
#heatmap
plot(som_model, type = "property", property = getCodes(som_model)[,4], main="Heat map - status")
mydata <- som_model$codes
wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var))
for (i in 2:15) {
wss[i] <- sum(kmeans(mydata, centers=i)$withinss)
}
plot(wss)
## use hierarchical clustering to cluster the codebook vectors
som_cluster <- cutree(hclust(dist(som_model$codes)), 6)
# plot these results:
plot(som_model, type="mapping", bgcol = pretty_palette[som_cluster], main = "Clusters")
add.cluster.boundaries(som_model, som_cluster)
It is write same way like tutorial, so how is possible tutorial works and this not ? I am new in R so I dont understood this error. I understood that there is probably problem with matrix, but how problem ?
There are several problems with your code. First of all you start with a very small data sample, you perform SOM
on a 2 x 1 grid which outputs just 2 rows in som_model$codes
and then you perform kmeans with up to 15 clusters. I will provide working code with the Sonar data set from library mlbench. I must add I have never used kohonen
library or SOM
in real data analyses.
library(mlbench)
library(kohonen)
data(Sonar) #somewhat bigger data example
data_train <- Sonar[, 1:60] #use first 60 columns
data_train_matrix <- as.matrix(scale(data_train)) #scale data
som_grid <- somgrid(xdim = 5, ydim = 5, topo = "hexagonal") #initialize a bigger grid
som_model <- som(data_train_matrix,
grid = som_grid,
rlen = 500,
alpha = c(0.05,0.01),
keep.data = TRUE )
plot(som_model, type = "changes")
mydata <- som_model$codes[[1]] #extract the matrix containing codebook vectors
wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var))
for (i in 2:24) { #i must be less than 5*5 the grid size defined at the begining
wss[i] <- sum(kmeans(mydata, centers = i)$withinss)
}
plot(wss, type = "l")
lets use 8 clusters to cut the three:
som_cluster <- cutree(hclust(dist(mydata)), k = 8)
plot(som_model, type="mapping", bgcol = som_cluster, main = "Clusters")
add.cluster.boundaries(som_model, som_cluster)