I'm trying to use geoviews to display a path. I can get it to display ONLY the points properly:
import numpy as np
import geoviews as gv
import cartopy.crs as ccrs
import pandas as pd
hv.extension('bokeh')
coord_system = ccrs.UTM(17)
userLine = [[ 501386.89237725, 3026047.23276743],
[ 502233.40219658, 3030363.86891928],
[ 497065.22714886, 3031309.6654351 ],
[ 499260.08171301, 3027147.9437062 ],
[ 494678.08475863, 3026891.08691589],
[ 494971.32963864, 3025188.1383645 ],
[ 496475.86909916, 3025394.03293946],
[ 496061.07730504, 3026116.58492655],
[ 497530.90995815, 3026357.00292598]]
line_pd = pd.DataFrame(userLine, columns=['Longitude', 'Latitude'])
pressure = pd.DataFrame(np.arange(0,401,np.ceil(401/len(userLine))), columns=['Pressure'])
windspeed = pd.DataFrame(np.arange(0,201,np.ceil(201/len(userLine))), columns=['Max_Wind_Speed'])
alldata = pd.concat([line_pd,pressure,windspeed], axis=1)
gvdata = gv.Dataset(alldata, kdims=['Pressure','Max_Wind_Speed','Longitude','Latitude'])
hover = HoverTool(tooltips=[("Longitude", "@Longitude"), ("Latitude", "@Latitude"), ("Pressure","@Pressure"),("Max Wind Speed","@Max_Wind_Speed")])
%%opts Points (size=10 cmap='inferno') [tools=[hover] color_index=4]
gvdata.to(gv.Points, kdims=['Longitude', 'Latitude'], vdims=['Pressure','Max_Wind_Speed'], crs=coord_system)
But what I really want is a path. However, when I try:
gvdata.to(gv.Path, kdims=['Longitude', 'Latitude'], crs=coord_system)
I get the error message DataError: None of the available storage backends were able to support the supplied data format.
I have tried reformatting the input data, but no success. I'm not sure what else I could be doing wrong.
The .to
method has the purpose of letting you easily group high-dimensional data. In this particular example you have only two dimensions (latitude and longitude) so there is no need to use .to
. In your particular example this should be sufficient to construct the plot:
gv.Path([userLine], crs=coord_system)
Path
types in HoloViews can be constructed using a list of arrays, dataframes or dictionary of columns, so this would also work:
line_pd = pd.DataFrame(userLine, columns=['Longitude', 'Latitude'])
gv.Path([line_pd], crs=coord_system)
Edit: In your expanded example the format that works for me is as follows:
%%opts Path (cmap='inferno') [tools=[hover] color_index='Max_Wind_Speed']
gv.Path([alldata], vdims=['Pressure','Max_Wind_Speed'], crs=coord_system)