I'm trying to train a Restricted Boltzmann Machine (RBM) with DeepLearning4J 0.7 but without success. All the examples I found are either not doing anything useful or not working anymore with DeepLearning4J 0.7.
I need to train a single RBM with Contrastive Divergence and then compute the reconstruction error.
Here is what I have so far:
import org.nd4j.linalg.factory.Nd4j;
import org.deeplearning4j.datasets.fetchers.MnistDataFetcher;
import org.deeplearning4j.nn.conf.layers.RBM;
import org.deeplearning4j.nn.api.Layer;
import static org.deeplearning4j.nn.conf.layers.RBM.VisibleUnit;
import static org.deeplearning4j.nn.conf.layers.RBM.HiddenUnit;
import org.deeplearning4j.optimize.api.IterationListener;
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.Updater;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.nd4j.linalg.api.ndarray.INDArray;
public class experiment3 {
private static final Logger log = LoggerFactory.getLogger(experiment3.class);
public static void main(String[] args) throws Exception {
DataSetIterator mnistTrain = new MnistDataSetIterator(100, 60000, true);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.regularization(false)
.iterations(1)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.list()
.layer(0, new RBM.Builder()
.nIn(784).nOut(500)
.weightInit(WeightInit.XAVIER)
.lossFunction(LossFunctions.LossFunction.RECONSTRUCTION_CROSSENTROPY)
.updater(Updater.NESTEROVS)
.learningRate(0.1)
.momentum(0.9)
.k(1)
.build())
.pretrain(true).backprop(false)
.build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(600));
for(int i = 0; i < 50; i++) {
model.fit(mnistTrain);
}
}
}
It compiles and print some score at each epoch, but the score augments when it should be diminishing and I have not found any way to do reconstruction.
I have tried to use the reconstruct function and compute the distance:
while(mnistTrain.hasNext()){
DataSet next = mnistTrain.next();
INDArray in = next.getFeatureMatrix();
INDArray out = model.reconstruct(in, 1); // tried with 0 but arrayindexoutofbounds
log.info("distance(1):" + in.distance1(out));
}
but the distance is always 0.0 for each element even when the model has not been trained for a single epoch, which is impossible.
Is this the correct way of training a RBM ? How can I reconstruct input with a single RBM ?
I realize that the question is old but the recent activity revealed it in my flow.
I'd just like to say that I've been using RBM's recently in DL4j, both single and multiple layers. They might not be officially supported, but they work. I also stumbled on reconstruct
. To test the model, you should use output
, like in a FF network. In your case, I assume it would be:
INDArray in = next.getFeatureMatrix();
INDArray out = model.output(in);
A couple of additions:
I'm using 0.9.1