pythonpython-3.xperformancenumpylab-color-space

Improve the Speed of Mapping A List of Lab Colors to a Second List of Lab Colors


The problem I am having is that I have two lists that create a decently large loop that is extremely slow... 3.5 to 4 seconds slow. I'm looking to improve that. Both lists that I am using contain Lab Colors. The first list is a color palette, call it palette_colors.

The second list has individual lab colors that I am using to compare, call it query_colors.

I loop through the second query_colors to compare each color within the list to each one of the colors in palette_colors list. From that we get a distance that is used to check if the color would fall within a certain threshold.

The problem I am having is that, since palette_colors is a large list (about 300 items), and query_colors has around 100, it iterates around 30,000 times.

So the question is, how can this be improved to run much faster?


Here are some of my thoughts:

  1. Parallel Processing: I tried to use parallel processing but either it wasn't the right context to use it in or I just didn't know what I was doing... I'm leaning towards not knowing what I was doing as the issue.

  2. Cache between processed hex values: My first thought was to cache the distance between color combinations, however, that doesn’t help much because colors are very specific: FFFFFF != FFFFFE, even though they are visibly the same.

  3. Initial Hex Lookup Cache: Another thought was to compare the hex values… if the hex values matched, then just return that match. However, the same problem exists that Idea 1 suffers from.

  4. Numpy Arrays + Distance Function: Perhaps if there was a way to turn both lists into numpy arrays that only contain the Lab values, then compare each using the CIELAB2000 distance function?

Here is my fully functioning script (make sure to install colormath):

from time import time
from colormath.color_diff import delta_e_cie2000
from colormath.color_objects import LabColor
from operator import itemgetter

# Helper function for timing
milli_time = lambda: int(round(time() * 1000))


# when merging similar colors, check to see how much of that color there is before merging
def map_colors(query_colors, max_dist=100):

    # Contains colors from the palette that are closest to each color
    close_colors = []

    # loop through colors that we want to map
    for color_to_compare in query_colors:

        # compare lab distance with palette colors
        closest = [check_distance(palette_color, color_to_compare, max_dist) for palette_color in palette_colors]

        # Remove "none" values
        closest = [c for c in closest if c is not None]

        # sort by distance (ascending)
        closest = sorted(closest, key=itemgetter('distance'))[:1][0]['hex']

        # Remove hash
        closest = closest.replace('#','').lower()

        # Add to main list of closest colors
        close_colors.append(closest)

    return close_colors


# Checks the distance betwen lab colors
def check_distance(color_1, color_2, max_dist):
    distance = delta_e_cie2000(color_1['lab'], color_2['lab'])
    if distance < max_dist:
        return {
            'hex': color_1['hex'], 
            'lab': color_1['lab'],
            'distance': distance
        }

# list of palette colors
# Stack overflow doesn't allow this many characters, 
# so you'll have to copy and past the color palette from this url:

# https://codepen.io/anon/pen/bvrwzE?editors=1010
palette_colors = [] # ^^^^

# list of colors to compare
query_colors = [{'lab': LabColor(lab_l=89.82760556495964,lab_a=-3.4924545681218055,lab_b=13.558600954011734)}, {'lab': LabColor(lab_l=2.014962108133794,lab_a=0.22811941599047703,lab_b=1.790011046195017)}, {'lab': LabColor(lab_l=40.39474520781096,lab_a=2.901069537563777,lab_b=11.280131535056025)}, {'lab': LabColor(lab_l=67.39662457756837,lab_a=-2.5976442408520706,lab_b=26.652254040495404)}, {'lab': LabColor(lab_l=32.389426017556374,lab_a=1.0164239936505115,lab_b=12.27627339551004)}, {'lab': LabColor(lab_l=55.13922546782179,lab_a=-1.435016766528352,lab_b=35.18742442417581)}, {'lab': LabColor(lab_l=73.96645091673257,lab_a=1.0198226618362005,lab_b=18.548230422095546)}, {'lab': LabColor(lab_l=44.90651839131053,lab_a=-1.4672716457064805,lab_b=18.154138443480683)}, {'lab': LabColor(lab_l=60.80488926260843,lab_a=-8.077128235007613,lab_b=16.719069040228884)}, {'lab': LabColor(lab_l=4.179197112322317,lab_a=3.642005050652555,lab_b=3.0407269339523646)}, {'lab': LabColor(lab_l=30.180289034511695,lab_a=1.7045267250474505,lab_b=28.01083333844222)}, {'lab': LabColor(lab_l=44.31005006010243,lab_a=-4.362010483995816,lab_b=18.432029645523528)}, {'lab': LabColor(lab_l=0.8423115373777676,lab_a=0.13906540788867494,lab_b=-0.3786920370309088)}, {'lab': LabColor(lab_l=52.12865600856179,lab_a=-0.5797000071502412,lab_b=31.8790459272144)}, {'lab': LabColor(lab_l=67.92970225276791,lab_a=-4.149165904914209,lab_b=33.253179101415256)}, {'lab': LabColor(lab_l=60.97889320274747,lab_a=3.338501380000247,lab_b=20.062676387837676)}, {'lab': LabColor(lab_l=2.593838857738689,lab_a=2.824229469131745,lab_b=2.704743489514988)}, {'lab': LabColor(lab_l=7.392989008245966,lab_a=9.59267973632079,lab_b=6.729836507330539)}, {'lab': LabColor(lab_l=98.10223593819727,lab_a=-1.3873907335449909,lab_b=4.897317053977535)}, {'lab': LabColor(lab_l=82.313865698896,lab_a=2.588499921779952,lab_b=2.5971717623187507)}, {'lab': LabColor(lab_l=28.371415683395696,lab_a=5.560367090545137,lab_b=0.6970013651421025)}, {'lab': LabColor(lab_l=41.300756170362206,lab_a=-1.8010193876651093,lab_b=5.122094973647007)}, {'lab': LabColor(lab_l=5.26507956373176,lab_a=4.548521840585698,lab_b=-0.8421897365563757)}, {'lab': LabColor(lab_l=60.53644890578005,lab_a=1.9353937585603886,lab_b=13.731983810148996)}, {'lab': LabColor(lab_l=18.50664175674912,lab_a=4.127558915370255,lab_b=1.5318785538835367)}, {'lab': LabColor(lab_l=46.121107041110534,lab_a=-4.738660301778608,lab_b=11.46208844171116)}, {'lab': LabColor(lab_l=35.096818879142134,lab_a=3.865379674380942,lab_b=8.636348905128832)}, {'lab': LabColor(lab_l=23.053962804968776,lab_a=1.7671822304096418,lab_b=2.044120086931378)}, {'lab': LabColor(lab_l=34.77343072376579,lab_a=-3.57662664587155,lab_b=9.259575358162131)}, {'lab': LabColor(lab_l=35.35931031618316,lab_a=5.074166825160403,lab_b=7.782881046177659)}, {'lab': LabColor(lab_l=21.404442965730887,lab_a=3.157463425084356,lab_b=18.391549176595827)}, {'lab': LabColor(lab_l=86.26486893959512,lab_a=4.032848274744483,lab_b=-8.58323099615992)}, {'lab': LabColor(lab_l=45.991759128676385,lab_a=0.491023915355826,lab_b=10.794889190806279)}, {'lab': LabColor(lab_l=8.10395281254021,lab_a=2.434569728945693,lab_b=12.18393849532981)}, {'lab': LabColor(lab_l=37.06003096203893,lab_a=1.8239118316595027,lab_b=25.900755157740306)}, {'lab': LabColor(lab_l=34.339870663873945,lab_a=4.98653095415319,lab_b=1.8327067580758416)}, {'lab': LabColor(lab_l=46.981747324933046,lab_a=5.292489697923786,lab_b=6.937195284587405)}, {'lab': LabColor(lab_l=35.813822728158144,lab_a=29.12172183663478,lab_b=31.259045232888216)}, {'lab': LabColor(lab_l=83.84664420563516,lab_a=4.076393227849973,lab_b=7.589758095027621)}, {'lab': LabColor(lab_l=4.862540354567976,lab_a=3.691877768850965,lab_b=4.065132741305494)}, {'lab': LabColor(lab_l=29.520608025204446,lab_a=15.21028328876109,lab_b=-1.9817725741452907)}, {'lab': LabColor(lab_l=2.9184863831701477,lab_a=3.1009055082606847,lab_b=2.374657313916806)}, {'lab': LabColor(lab_l=25.119337116801645,lab_a=6.36800573668811,lab_b=5.191791275068236)}, {'lab': LabColor(lab_l=32.49319565030376,lab_a=4.09934993369665,lab_b=4.837690385449466)}, {'lab': LabColor(lab_l=6.09612588470991,lab_a=9.66024466422727,lab_b=2.297265839425217)}, {'lab': LabColor(lab_l=32.607204509025415,lab_a=37.17700423170081,lab_b=11.087136268936316)}, {'lab': LabColor(lab_l=45.72621067797596,lab_a=4.995679962723376,lab_b=8.10305144884066)}, {'lab': LabColor(lab_l=15.182103174406642,lab_a=17.3648698250356,lab_b=16.351707883547945)}, {'lab': LabColor(lab_l=30.735504056893177,lab_a=20.749263489097476,lab_b=11.103091166084845)}, {'lab': LabColor(lab_l=47.58987428222485,lab_a=21.4969535181187,lab_b=24.91820246623675)}, {'lab': LabColor(lab_l=3.2817937526961423,lab_a=7.0384930526659755,lab_b=5.0447129238750605)}, {'lab': LabColor(lab_l=39.176664955904386,lab_a=7.001035374555848,lab_b=7.1369181820884915)}, {'lab': LabColor(lab_l=32.47219675839261,lab_a=-2.4501733403216597,lab_b=10.408787644368223)}, {'lab': LabColor(lab_l=8.87372837821,lab_a=-2.5643873356231834,lab_b=5.64931313305761)}, {'lab': LabColor(lab_l=1.742927713725976,lab_a=0.539611795069117,lab_b=-0.6652519493932862)}, {'lab': LabColor(lab_l=33.873919675420986,lab_a=5.764566965886092,lab_b=-17.964944971494113)}, {'lab': LabColor(lab_l=40.693479627397174,lab_a=6.595272818345682,lab_b=5.018268124660407)}, {'lab': LabColor(lab_l=88.60103885061399,lab_a=2.6126810949935186,lab_b=-2.945792185321894)}, {'lab': LabColor(lab_l=55.70462312256947,lab_a=6.028112199048142,lab_b=-13.056527815975972)}, {'lab': LabColor(lab_l=9.115995988538636,lab_a=31.807462808077545,lab_b=-35.11774548995232)}, {'lab': LabColor(lab_l=38.051505820085076,lab_a=34.8155573981796,lab_b=-18.475401488472354)}, {'lab': LabColor(lab_l=71.92703712306943,lab_a=-3.471403558562458,lab_b=-10.445020993962896)}, {'lab': LabColor(lab_l=26.243044230459148,lab_a=46.369628814522414,lab_b=34.6338595372704)}, {'lab': LabColor(lab_l=66.76005751735073,lab_a=20.035224514354134,lab_b=25.87283658575612)}, {'lab': LabColor(lab_l=63.60391924768574,lab_a=-2.891469413896064,lab_b=9.573769130513398)}, {'lab': LabColor(lab_l=41.24069266482021,lab_a=16.278878911463096,lab_b=9.759226052984914)}, {'lab': LabColor(lab_l=27.25079531257893,lab_a=24.94884066949429,lab_b=-48.598531002024316)}, {'lab': LabColor(lab_l=4.265814465219158,lab_a=10.473548710425703,lab_b=4.1174226612907985)}, {'lab': LabColor(lab_l=87.15090987843114,lab_a=7.229747311809753,lab_b=-14.635793427155486)}, {'lab': LabColor(lab_l=54.54311545632727,lab_a=8.647572834710072,lab_b=-18.893603550071546)}, {'lab': LabColor(lab_l=11.276968541214082,lab_a=18.169882892627108,lab_b=-30.249378295412065)}, {'lab': LabColor(lab_l=35.090989205367,lab_a=1.0233204899371962,lab_b=-0.3006113739771554)}, {'lab': LabColor(lab_l=2.9317972315881953,lab_a=0.8523516700251477,lab_b=0.29972821911726233)}, {'lab': LabColor(lab_l=42.71927233847029,lab_a=15.072870104265279,lab_b=-31.54622665459128)}, {'lab': LabColor(lab_l=1.622807369995023,lab_a=1.0292382494377224,lab_b=1.2173768955478448)}, {'lab': LabColor(lab_l=85.05833643040985,lab_a=1.955449992315006,lab_b=-9.91904370358645)}, {'lab': LabColor(lab_l=1.6648316964409666,lab_a=0.13905563573127222,lab_b=-0.37887416481000025)}, {'lab': LabColor(lab_l=53.47424677173646,lab_a=1.322931077791023,lab_b=-0.14670143432404803)}, {'lab': LabColor(lab_l=3.7059376097529935,lab_a=0.31588132922930057,lab_b=0.11051016676932868)}, {'lab': LabColor(lab_l=1.4885457056861533,lab_a=0.6786902325009586,lab_b=-1.043701149385401)}, {'lab': LabColor(lab_l=16.298330353761287,lab_a=0.4909724855400033,lab_b=3.125329071162186)}]


if __name__ == '__main__':

    start_time = milli_time()

    colors = map_colors(query_colors)

    print(colors)
    print('Script took', milli_time() - start_time, 'milliseconds to run.')

Solution

  • Instead of color object and list comprehension you can use the array function from color_diff_matrix on raw Lab values:

    from colormath.color_diff_matrix import delta_e_cie2000
    
    # Colors as raw Lab values
    # Some test data
    palette_colors = np.tile([ 2.01496211,  0.22811942,  1.79001105], [300, 1])
    color_to_compare = np.array([ 89.82760556,  -3.49245457,  13.55860095])
    
    dist = delta_e_cie2000(color_to_compare, palette_colors)
    closest = palette_colors[np.argmin(dist)]  # also color as raw Lab components
    

    This should already give a nice speedup, but I got another factor 5 by jitting the function with numba:

    from colormath.color_diff_matrix import delta_e_cie2000
    from numba import jit
    
    delta_e_cie2000_jit = jit(delta_e_cie2000)
    dist = delta_e_cie2000_jit(color_to_compare, palette_colors)
    ... # the rest is the same
    

    Note that the first execution of the jitted function is slow due to the compilation process.