I am trying to program the naive parallel version of Conjugate gradient, so I started with the simple Wikipedia algorithm, and I want to change the dot-products
and MatrixVector
products by their appropriate parallel version, The Rcppparallel documentation has the code for the dot-product
using parallelReduce; I think I'm gonna use that version for my code, but I'm trying to make the MatrixVector
multiplication, but I haven't achieved good results compared to R base (no parallel)
Some versions of parallel matrix multiplication: using OpenMP, Rcppparallel, serial version, a serial version with Armadillo, and the benchmark
// [[Rcpp::depends(RcppParallel)]]
#include <Rcpp.h>
#include <RcppParallel.h>
#include <numeric>
// #include <cstddef>
// #include <cstdio>
#include <iostream>
using namespace RcppParallel;
using namespace Rcpp;
struct InnerProduct : public Worker
{
// source vectors
const RVector<double> x;
const RVector<double> y;
// product that I have accumulated
double product;
// constructors
InnerProduct(const NumericVector x, const NumericVector y)
: x(x), y(y), product(0) {}
InnerProduct(const InnerProduct& innerProduct, Split)
: x(innerProduct.x), y(innerProduct.y), product(0) {}
// process just the elements of the range I've been asked to
void operator()(std::size_t begin, std::size_t end) {
product += std::inner_product(x.begin() + begin,
x.begin() + end,
y.begin() + begin,
0.0);
}
// join my value with that of another InnerProduct
void join(const InnerProduct& rhs) {
product += rhs.product;
}
};
struct MatrixMultiplication : public Worker
{
// source matrix
const RMatrix<double> A;
//source vector
const RVector<double> x;
// destination matrix
RMatrix<double> out;
// initialize with source and destination
MatrixMultiplication(const NumericMatrix A, const NumericVector x, NumericMatrix out)
: A(A), x(x), out(out) {}
// take the square root of the range of elements requested
void operator()(std::size_t begin, std::size_t end) {
for (std::size_t i = begin; i < end; i++) {
// rows we will operate on
//RMatrix<double>::Row rowi = A.row(i);
RMatrix<double>::Row rowi = A.row(i);
//double res = std::inner_product(rowi.begin(), rowi.end(), x.begin(), 0.0);
//Rcout << "res" << res << std::endl;
out(i,1) = std::inner_product(rowi.begin(), rowi.end(), x.begin(), 0.0);
//Rcout << "res" << out(i,1) << std::endl;
}
}
};
// [[Rcpp::export]]
double parallelInnerProduct(NumericVector x, NumericVector y) {
// declare the InnerProduct instance that takes a pointer to the vector data
InnerProduct innerProduct(x, y);
// call paralleReduce to start the work
parallelReduce(0, x.length(), innerProduct);
// return the computed product
return innerProduct.product;
}
//librar(Rbenchmark)
// [[Rcpp::export]]
NumericVector matrixXvectorRcppParallel(NumericMatrix A, NumericVector x) {
// // declare the InnerProduct instance that takes a pointer to the vector data
// InnerProduct innerProduct(x, y);
int nrows = A.nrow();
NumericVector out(nrows);
for(int i = 0; i< nrows;i++ )
{
out(i) = parallelInnerProduct(A(i,_),x);
}
// return the computed product
return out;
}
// [[Rcpp::export]]
arma::rowvec matrixXvectorParallel(arma::mat A, arma::colvec x){
arma::rowvec y = A.row(0)*0;
int filas = A.n_rows;
int columnas = A.n_cols;
#pragma omp parallel for
for(int j=0;j<columnas;j++)
{
//y(j) = A.row(j)*x(j))
y(j) = dotproduct(A.row(j),x);
}
return y;
}
arma::mat matrixXvector2(arma::mat A, arma::mat x){
//arma::rowvec y = A.row(0)*0;
//y=A*x;
return A*x;
}
arma::rowvec matrixXvectorParallel2(arma::mat A, arma::colvec x){
arma::rowvec y = A.row(0)*0;
int filas = A.n_rows;
int columnas = A.n_cols;
#pragma omp parallel for
for(int j = 0; j < columnas ; j++){
double result = 0;
for(int i = 0; i < filas; i++){
result += x(i)*A(j,i);
}
y(j) = result;
}
return y;
}
Benchmark
test replications elapsed relative user.self sys.self user.child sys.child
1 M %*% a 20 0.026 1.000 0.140 0.060 0 0
2 matrixXvector2(M, as.matrix(a)) 20 0.040 1.538 0.101 0.217 0 0
4 matrixXvectorParallel2(M, a) 20 0.063 2.423 0.481 0.000 0 0
3 matrixXvectorParallel(M, a) 20 0.146 5.615 0.745 0.398 0 0
5 matrixXvectorRcppParallel(M, a) 20 0.335 12.885 2.305 0.079 0 0
My last trial at the moment was using parallefor with Rcppparallel, but I'm getting memory errors and I dont have idea where the problem is
// [[Rcpp::export]]
NumericVector matrixXvectorRcppParallel2(NumericMatrix A, NumericVector x) {
// // declare the InnerProduct instance that takes a pointer to the vector data
int nrows = A.nrow();
NumericMatrix out(nrows,1); //allocar mempria de vector de salida
//crear worker
MatrixMultiplication matrixMultiplication(A, x, out);
parallelFor(0,A.nrow(),matrixMultiplication);
// return the computed product
return out;
}
What I notice is that when I check in my terminal using htop how the processors are working, I see in htop when I apply the conventional Matrix vector multiplication using R-base, that is using all the processors, so Does the matrix multiplication perform parallel by default? because in theory, only one processor should be working if is the serial version.
If someone knows which is the better path, OpenMP or Rcppparallel, or another way, that gives me better performance than the apparently serial version of R-base.
The serial code for conjugte gradient at the moment
// [[Rcpp::export]]
arma::colvec ConjugateGradient(arma::mat A, arma::colvec xini, arma::colvec b, int num_iteraciones){
//arma::colvec xnew = xini*0 //inicializar en 0's
arma::colvec x= xini; //inicializar en 0's
arma::colvec rkold = b - A*xini;
arma::colvec rknew = b*0;
arma::colvec pk = rkold;
int k=0;
double alpha_k=0;
double betak=0;
double normak = 0.0;
for(k=0; k<num_iteraciones;k++){
Rcout << "iteracion numero " << k << std::endl;
alpha_k = sum(rkold.t() * rkold) / sum(pk.t()*A*pk); //sum de un elemento para realizar casting
(pk.t()*A*pk);
x = x+ alpha_k * pk;
rknew = rkold - alpha_k*A*pk;
normak = sum(rknew.t()*rknew);
if( normak < 0.000001){
break;
}
betak = sum(rknew.t()*rknew) / sum( rkold.t() * rkold );
//actualizar valores para siguiente iteracion
pk = rknew + betak*pk;
rkold = rknew;
}
return x;
}
I wasn't aware of the use of BLAS in R, thanks Hong Ooi and tim18, so the new benchmark using option(matprod="internal") and option(matprod="blas")
options(matprod = "internal")
res<-benchmark(M%*%a,matrixXvector2(M,as.matrix(a)),matrixXvectorParallel(M,a),matrixXvectorParallel2(M,a),matrixXvectorRcppParallel(M,a),order="relative",replications = 20)
res
test replications elapsed relative user.self sys.self user.child sys.child
2 matrixXvector2(M, as.matrix(a)) 20 0.043 1.000 0.107 0.228 0 0
4 matrixXvectorParallel2(M, a) 20 0.069 1.605 0.530 0.000 0 0
1 M %*% a 20 0.072 1.674 0.071 0.000 0 0
3 matrixXvectorParallel(M, a) 20 0.140 3.256 0.746 0.346 0 0
5 matrixXvectorRcppParallel(M, a) 20 0.343 7.977 2.272 0.175 0 0
options(matprod="blas")
options(matprod = "blas")
res<-benchmark(M%*%a,matrixXvector2(M,as.matrix(a)),matrixXvectorParallel(M,a),matrixXvectorParallel2(M,a),matrixXvectorRcppParallel(M,a),order="relative",replications = 20)
res
test replications elapsed relative user.self sys.self user.child sys.child
1 M %*% a 20 0.021 1.000 0.093 0.054 0 0
2 matrixXvector2(M, as.matrix(a)) 20 0.092 4.381 0.177 0.464 0 0
5 matrixXvectorRcppParallel(M, a) 20 0.328 15.619 2.143 0.109 0 0
4 matrixXvectorParallel2(M, a) 20 0.438 20.857 3.036 0.000 0 0
3 matrixXvectorParallel(M, a) 20 0.546 26.000 3.667 0.127 0 0
As you already found out, the base R matrix multiplication can be multi-threaded, if a multi-threaded BLAS implementation is used. This is the case for the rocker/*
docker images, which typically use OpenBLAS.
In addition, (Rcpp)Armadillo already uses the BLAS library used by R (in this case multi-threaded OpenBLAS) as well as OpenMP. So your "serial" version is actually multi-threaded. You can verify this in htop
with a large enough matrix as input.
BTW, what you are trying to do looks like premature optimization to me.