I added a callback to decay the learning rate:
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
verbose=0, mode='auto',epsilon=0.00002, cooldown=20, min_lr=0)
Here is my tensorboard callback:
keras.callbacks.TensorBoard(log_dir='./graph/rank{}'.format(hvd.rank()), histogram_freq=10, batch_size=FLAGS.batch_size,
write_graph=True, write_grads=True, write_images=False)
I want to make sure the learning rate scheduler has kicked in during training, so I want to output the learning rate onto tensorboard. But I can not find where I can set it.
I also checked the optimizer api, but no luck.
keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
How can I output the learning rate to tensorboad?
According to the author of Keras, the proper way is to subclass the TensorBoard
callback:
from keras import backend as K
from keras.callbacks import TensorBoard
class LRTensorBoard(TensorBoard):
# add other arguments to __init__ if you need
def __init__(self, log_dir, **kwargs):
super().__init__(log_dir=log_dir, **kwargs)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs.update({'lr': K.eval(self.model.optimizer.lr)})
super().on_epoch_end(epoch, logs)
Then pass it as part of the callbacks
argument to model.fit
(credit Finncent Price):
model.fit(x=..., y=..., callbacks=[LRTensorBoard(log_dir="/tmp/tb_log")])