I am currently trying to implement a SVD of a very large matrix using bigmemory and irlba. As far as I understand I have to adjust the mult command in the irlba package, which I have done like this:
mult <- function(A, B, transpose=FALSE) {
if(is.null(dim(B))) B <- cbind(B)
if(transpose)
return(cbind((t(B) %*% A)[]))
cbind((A %*% B)[])
}
However, it does not work to run an SVD on a bigmatrix using irlba:
irlbaObject <- irlba(big, nv = 10, mult = mult)
For replicability here is an example of a big matrix I want to do a SVD on:
big <- file("big.txt", open = "a")
replicate(20, {
x <- matrix(rnorm(100 * 100), nrow = 10)
write.table(x, file = 'big.txt', append = TRUE,
row.names = FALSE, col.names = FALSE)
})
big <- read.big.matrix("big.txt", separated = FALSE,
type = "double",
backingfile = "big.bk",
backingpath = "/tmp",
descriptorfile = "big.desc")
This is the error message I get:
Error in A %*% B : requires numeric/complex matrix/vector arguments
Called from: cbind((A %*% B)[])
Does anyone have an idea how to avoid this error?
This should work:
library(bigalgebra)
library(irlba)
## --> CHANGES HERE <--
setMethod("%*%", signature(x = "big.matrix", y = "numeric"),
function(x, y) x %*% as.matrix(y))
setMethod("%*%", signature(x = "numeric", y = "big.matrix"),
function(x, y) t(x) %*% y)
mult <- function(A, B) (A %*% B)[]
# Repdata
x <- matrix(rnorm(20 * 100 * 100), nrow = 20 * 10)
big <- as.big.matrix(x)
# Computation
irlbaObject <- irlba(big, nv = 10, mult = mult)
# Verification
svd <- svd(x, nu = 10, nv = 10)
plot(irlbaObject$u, svd$u)
plot(irlbaObject$v, svd$v)
Note 1: I think the algo in irlba has changed and now use only matrix-vector multiplications.
Note 2: mult is a deprecated argument (it will disappear in next versions).
Note 3: I'm not sure this solution will be fast. If you want a fast algorithm to compute partial SVD, try function big_randomSVD of package bigstatsr (disclaimer: I'm the author).