i have created the structural and the behavioral code for a 1-bit ALU,as well as a control circuit .The control circuit decides the operation that will be conducted between two variables : a,b .
Here is my behavioral part of the code :
library ieee;
use ieee.std_logic_1164.all;
package erotima2 is
-- AND2 declaration
component myAND2
port (outnotA,outnotB: in std_logic; outAND: out std_logic);
end component;
-- OR2 declaration
component myOR2
port (outnotA,outnotB: in std_logic; outOR: out std_logic);
end component;
-- XOR2 declaration
component myXOR2
port (outnotA,outnotB: in std_logic; outXOR: out std_logic);
end component;
--fulladder declaration
component fulladder
port(CarryIn,outnotA,outnotB: in std_logic; sum,CarryOut: out std_logic);
end component;
--Ainvert declaration
component notA
port(a: in std_logic; signala: std_logic_vector(0 downto 0); outnotA: out std_logic);
end component;
--Binvert declaration
component notB
port(b: in std_logic; signalb: std_logic_vector(0 downto 0); outnotB: out std_logic);
end component;
--ControlCircuit declaration--
component ControlCircuit
port (
opcode : in std_logic_vector (2 downto 0);
signala,signalb : out std_logic_vector(0 downto 0);
operation : out std_logic_vector (1 downto 0);
CarryIn: out std_logic);
end component;
--mux4to1 declaration
component mux4to1
port(outAND, outOR, sum, outXOR: in std_logic; operation: in std_logic_vector(1 downto 0); Result: out std_logic);
end component;
end package erotima2;
--2 input AND gate
library ieee;
use ieee.std_logic_1164.all;
entity myAND2 is
port (outnotA,outnotB: in std_logic; outAND: out std_logic);
end myAND2;
architecture model_conc of myAND2 is
begin
outAND<= outnotA and outnotB;
end model_conc;
-- 2 input OR gate
library ieee;
use ieee.std_logic_1164.all;
entity myOR2 is
port (outnotA,outnotB: in std_logic; outOR: out std_logic);
end myOR2;
architecture model_conc2 of myOR2 is
begin
outOR <= outnotA or outnotB;
end model_conc2;
--2 input XOR gate
library ieee;
use ieee.std_logic_1164.all;
entity myXOR2 is
port(outnotA,outnotB: in std_logic; outXOR: out std_logic);
end myXOR2;
architecture model_conc3 of myXOR2 is
begin
outXOR <= outnotA xor outnotB;
end model_conc3;
--3 input full adder
library ieee;
use ieee.std_logic_1164.all;
entity fulladder is
port(CarryIn,outnotA,outnotB: in std_logic; sum,CarryOut: out std_logic);
end fulladder;
architecture model_conc4 of fulladder is
begin
CarryOut <= (outnotB and CarryIn) or (outnotA and CarryIn) or (outnotA and outnotB);
sum <= (outnotA and not outnotB and not CarryIn) or (not outnotA and outnotB and not CarryIn) or (not outnotA and not outnotB and CarryIn) or (outnotA and outnotB and CarryIn);
end model_conc4;
--1 input notA
library ieee;
use ieee.std_logic_1164.all;
entity notA is
port(a: in std_logic; signala:std_logic_vector(0 downto 0); outnotA: out std_logic);
end notA;
architecture model_conc6 of notA is
begin
with signala select
outnotA <= a when "0",
not a when others;
end model_conc6;
--1 input notB
library ieee;
use ieee.std_logic_1164.all;
entity notB is
port(b: in std_logic; signalb: std_logic_vector(0 downto 0); outnotB: out std_logic);
end notB;
architecture model_conc5 of notB is
begin
with signalb select
outnotB <= b when "0",
not b when others;
end model_conc5;
--4 input MUX
library ieee;
use ieee.std_logic_1164.all;
entity mux4to1 is
port(outAND, outOR, sum, outXOR: in std_logic; operation: in std_logic_vector(1 downto 0); Result: out std_logic);
end mux4to1;
architecture model_conc7 of mux4to1 is
begin
with operation select
Result<= outAND when "00",
outOR when "01",
sum when "10",
outXOR when OTHERS;
end model_conc7 ;
The behavioral part defines the logic gates of AND,OR,XOR, a full adder for numerical addition and substraction. It also contains a 4-to-1 multiplexer that chooses (depending on the value of the "operation" variable) which operation the alu will do. Lastly there is a function that inverts the variables in order to be more efficient with our logic gate usage( using the DeMorgan theorem so we don't have to create a NOR gate). The control unit initializes the variable inputs, as well as the carryIn variable of the full adder, depending on the variable "opcode". A board with every possible combination Next is the Control Circuit part of the code, which implements the previous board.
`
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity ControlCircuit is
port (
opcode :in std_logic_vector (2 downto 0);
signala, signalb : out std_logic_vector(0 downto 0);
operation : out std_logic_vector(1 downto 0);
CarryIn : out std_logic);
end ControlCircuit;
architecture model_conc9 of ControlCircuit is
--signal outAND,outOR,outXOR,sum,outnotA,outnotB : std_logic;
--signal operation : out std_logic_vector(1 downto 0);
begin
process(opcode)
begin
case opcode is
--AND--
when "000"=>
operation <= "00";
signala <= "0";
signalb <= "0";
CarryIn <= '0';
--OR--
when "001" =>
operation <= "01";
signala <= "0";
signalb <= "0";
CarryIn <= '0';
--ADD--
when "011" =>
operation <= "10";
signala <= "0";
signalb <= "0";
CarryIn <= '0';
--SUB--
when "010" =>
operation <= "10";
signala <= "0";
signalb <="1";
CarryIn <= '1';
--NOR--
when "101"=>
operation <= "00";
signala <= "1";
signalb <= "1";
CarryIn <= '0';
--xor
when "100" =>
operation <= "11";
signala <= "0";
signalb <= "0";
CarryIn <= '0';
--Adiafores times--
when others =>
operation <= "00";
signala <= "0";
signalb <= "0";
CarryIn <= '0';
end case;
end process;
end model_conc9;
`
Lastly here is the code that uses all the previous parts and and an RTL diagram that shows the code's result
library IEEE;
use ieee.std_logic_1164.all;
use work.erotima2.all;
entity structural is
port (a,b: in std_logic;
opcode : in std_logic_vector ( 2 downto 0);
Result,CarryOut : out std_logic);
end structural;
architecture alu of structural is
signal outAND,outOR,outXOR,sum,outnotA,outnotB,CarryIn : std_logic;
signal signala,signalb : std_logic_vector (0 downto 0);
signal operation : std_logic_vector (1 downto 0);
begin
u0 : myAND2 port map (outnotA,outnotB,outAND);
u1 : myOR2 port map (outnotA,outnotB,outOR);
u2 : myXOR2 port map (outnotA,outnotB,outXOR);
u3 : fulladder port map (CarryIn,outnotA,outnotB,sum,CarryOut);
u4 : notA port map (a,signala,outnotA);
u5 : notB port map (b,signalb,outnotB);
u6 : mux4to1 port map (outAND, outOR,sum, outXOR, operation, Result );
u8 : ControlCircuit port map(opcode,signala,signalb,operation,CarryIn);
end alu;
Now for the tough part, i need to use the 1-bit ALU 16 times as a component, to create a 16-bit ALU. It is important to keep the control circuit independent from the rest of the code. I have tried using an std_logic_vector ( 15 downto 0) but it did not work and i would like to use the previous code segments as a component. Can anyone give any tips or ideas that will help connect 16 1-bit ALUs to a complete 16-bit ALU? Thanks in advance for those who read this massive wall of text.
Your recent comment
Yes i understand that my code is weird but we were intsructed to invert the inputs according to this diagram . As for the duplicate post, i checked before posting and they were implemented only structurally, while in my case i need to write the behavioral part too.
Explains the issue, misspellings aside. You'll notice your architecture structural of entity structural doesn't match the signals shown on the above 1 bit alu diagram which doesn't contain an instantiated ControlCircuit.
If you were to provide a design unit that matched the above diagram you can hook up the 1 bit alu carry chain while deriving the carryin for the lsb from the control block which provides a + 1 and inversion for subtraction:
library ieee;
use ieee.std_logic_1164.all;
entity alu_16_bit is
port (
a: in std_logic_vector (15 downto 0);
b: in std_logic_vector (15 downto 0);
opcode: in std_logic_vector (2 downto 0);
result: out std_logic_vector (15 downto 0);
carryout: out std_logic
);
end entity;
architecture foo of alu_16_bit is
component alu_1_bit is
port (
a: in std_logic;
b: in std_logic;
ainvert: in std_logic;
binvert: in std_logic;
carryin: in std_logic;
operation: in std_logic_vector (1 downto 0);
result: out std_logic;
carryout: out std_logic
);
end component;
component controlcircuit is
port (
opcode: in std_logic_vector(2 downto 0);
ainvert: out std_logic;
binvert: out std_logic;
operation: out std_logic_vector(1 downto 0);
carryin: out std_logic -- invert a or b, add + 1 for subtract
);
end component;
signal ainvert: std_logic;
signal binvert: std_logic;
signal operation: std_logic_vector (1 downto 0);
signal carry: std_logic_vector (16 downto 0);
begin
CONTROL_CIRCUIT:
controlcircuit
port map (
opcode => opcode,
ainvert => ainvert,
binvert => binvert,
operation => operation,
carryin => carry(0) -- for + 1 durring subtract
);
GEN_ALU:
for i in 0 to 15 generate
ALU:
alu_1_bit
port map (
a => a(i),
b => b(i),
ainvert => ainvert,
binvert => binvert,
carryin => carry(i),
operation => operation,
result => result(i),
carryout => carry(i + 1)
);
end generate;
carryout <= carry(16) when operation = "10" else '0';
end architecture;
This represents moving ControlCircuit out of structural - only one copy is needed, renaming structural alu_1_bit and making the ports match.
There's a new top level alu_16_bit containing a single instance of ControlCircuit along with sixteen instances of alu_1_bit elaborated from the generate statement using the generate parameter i
to index into arrays values for connections.
This design has been behaviorally implemented independently using the Opcode table you provided the link to:
as well as an independent fulladder used in alu_1_bit and appears functional.
This implies your design units haven't been validated.