If I use functions in SymPy and call the diff method, the commutative property just gets ignored.
h = Function('h',real=True,commutative=False)(t)
R = Function('R',real=True,commutative=False)(t)
print(diff(R*h,t))
# returns:
R(t)*Derivative(h(t), t) + h(t)*Derivative(R(t), t)
Am I doing something wrong here? I just want the output to have R in the front always..
This is arguably a bug in SymPy, which determines the commutativity of a function from its arguments. See also this comment. It's not related to derivatives: simply printing h*R
will expose the bug (the expression is presented as R(t)*h(t)
).
Until this behavior is changed, it seems the only way to achieve the desired result is to declare t
to be noncommutative:
t = Symbol('t', commutative=False)
h = Function('h', real=True)(t)
R = Function('R', real=True)(t)
print(diff(R*h, t))
prints
R(t)*Derivative(h(t), t) + Derivative(R(t), t)*h(t)