pythonflaskpicklewerkzeugflask-cache

Parse bytes stored using Flask-Caching


I used Flask-Caching to cache the response of a Flask view in Redis. Getting the cached data directly from Redis returns some bytes. How can I parse this in Python to examine the cached value?

b'!\x80\x03cflask.wrappers\nResponse\nq\x00)\x81q\x01}q\x02(X\x07\x00\x00\x00headersq\x03cwerkzeug.datastructures\nHeaders\nq\x04)\x81q\x05}q\x06X\x05\x00\x00\x00_listq\x07]q\x08X\x0c\x00\x00\x00Content-Typeq\tX\x10\x00\x00\x00application/jsonq\n\x86q\x0basbX\x0c\x00\x00\x00_status_codeq\x0cK\xc8X\x07\x00\x00\x00_statusq\rX\x06\x00\x00\x00200 OKq\x0eX\x12\x00\x00\x00direct_passthroughq\x0f\x89X\t\x00\x00\x00_on_closeq\x10]q\x11X\x08\x00\x00\x00responseq\x12Xn\x00\x00\x00[\n  {\n    "desc": "pronoun object", \n    "tag": "CLO"\n  }, \n  {\n    "desc": "pronoun", \n    "tag": "CLS"\n  }\n]q\x13X\x01\x00\x00\x00\nq\x14\x86q\x15ub.'

Solution

  • Flask-Cache uses the RedisCache backend provided by Werkzeug, which serializes values using pickle.dumps. It also prepends a ! for help when deserializing. You should typically not mess with these values directly, and let Flask-Caching handle it.

    You can use pickletools.dis to safely examine the representation, then pickle.loads to deserialize it. Security note: pickle.loads can execute arbitrary code, so make sure you understand untrusted data first using pickletools.dis.

    >>> data = b'!\x80\x03cflask.wrappers\nResponse\nq\x00)\x81q\x01}q\x02(X\x07\x00\x00\x00headersq\x03cwerkzeug.datastructures\nHeaders\nq\x04)\x81q\x05}q\x06X\x05\x00\x00\x00_listq\x07]q\x08X\x0c\x00\x00\x00Content-Typeq\tX\x10\x00\x00\x00application/jsonq\n\x86q\x0basbX\x0c\x00\x00\x00_status_codeq\x0cK\xc8X\x07\x00\x00\x00_statusq\rX\x06\x00\x00\x00200 OKq\x0eX\x12\x00\x00\x00direct_passthroughq\x0f\x89X\t\x00\x00\x00_on_closeq\x10]q\x11X\x08\x00\x00\x00responseq\x12Xn\x00\x00\x00[\n  {\n    "desc": "pronoun object", \n    "tag": "CLO"\n  }, \n  {\n    "desc": "pronoun", \n    "tag": "CLS"\n  }\n]q\x13X\x01\x00\x00\x00\nq\x14\x86q\x15ub.'
    >>> value = value[1:]  # strip leading !
    
    >>> import pickletools
    >>> pickletools.dis(data)
            0: \x80 PROTO      3
        2: c    GLOBAL     'flask.wrappers Response'
       27: q    BINPUT     0
       29: )    EMPTY_TUPLE
       30: \x81 NEWOBJ
       31: q    BINPUT     1
       33: }    EMPTY_DICT
       34: q    BINPUT     2
       36: (    MARK
       37: X        BINUNICODE 'headers'
       49: q        BINPUT     3
       51: c        GLOBAL     'werkzeug.datastructures Headers'
       84: q        BINPUT     4
       86: )        EMPTY_TUPLE
       87: \x81     NEWOBJ
       88: q        BINPUT     5
       90: }        EMPTY_DICT
       91: q        BINPUT     6
       93: X        BINUNICODE '_list'
      103: q        BINPUT     7
      105: ]        EMPTY_LIST
      106: q        BINPUT     8
      108: X        BINUNICODE 'Content-Type'
      125: q        BINPUT     9
      127: X        BINUNICODE 'application/json'
      148: q        BINPUT     10
      150: \x86     TUPLE2
      151: q        BINPUT     11
      153: a        APPEND
      154: s        SETITEM
      155: b        BUILD
      156: X        BINUNICODE '_status_code'
      173: q        BINPUT     12
      175: K        BININT1    200
      177: X        BINUNICODE '_status'
      189: q        BINPUT     13
      191: X        BINUNICODE '200 OK'
      202: q        BINPUT     14
      204: X        BINUNICODE 'direct_passthrough'
      227: q        BINPUT     15
      229: \x89     NEWFALSE
      230: X        BINUNICODE '_on_close'
      244: q        BINPUT     16
      246: ]        EMPTY_LIST
      247: q        BINPUT     17
      249: X        BINUNICODE 'response'
      262: q        BINPUT     18
      264: X        BINUNICODE '[\n  {\n    "desc": "pronoun object", \n    "tag": "CLO"\n  }, \n  {\n    "desc": "pronoun", \n    "tag": "CLS"\n  }\n]'
      379: q        BINPUT     19
      381: X        BINUNICODE '\n'
      387: q        BINPUT     20
      389: \x86     TUPLE2
      390: q        BINPUT     21
      392: u        SETITEMS   (MARK at 36)
      393: b    BUILD
      394: .    STOP
    highest protocol among opcodes = 2
    
    >>> import pickle
    >>> response = pickle.loads(data)
    >>> response.content_type
    'application/json'
    >>> response.json
    [{'desc': 'pronoun object', 'tag': 'CLO'}, {'desc': 'pronoun', 'tag': 'CLS'}]