I am trying to implement the Rabin Karp algorithm with mod. The hash function which i am using is:
H1= c1*a^k-1 + c2*a^k-2 +c3*a^k-3 +…+ck*a^0
Here cx is the ASCII value of the character. And to roll it I first drop the first term by subtracting it, then multiply by a and add the new term by multiplying it with a^0.
Now the problem is to deal with large values i have used mod operations but doing that i am not able to roll it correctly. My code is as follows:
public class RabinKarp {
private static final int base = 26;
private static final int mod = 1180637;
public static void main(String[] args) {
String text = "ATCAAGTTACCAATA";
String pattern = "ATA";
char[] textArr = text.toCharArray();
char[] patternArr = pattern.toCharArray();
System.out.println(getMatchingIndex(textArr, patternArr));
}
public static int getMatchingIndex(char[] textArr, char[] patternArr) {
int n = textArr.length;
int m = patternArr.length;
int patternHash = getHashForPatternSize(patternArr, m);
int textHash = getHashForPatternSize(textArr, m);
for(int i = 0; i < n-m; i++) {
if(patternHash == textHash && checkMatch(textArr, patternArr, i, m))
return i;
textHash = rollingHash(textArr, textHash, i, m);
}
return -1;
}
public static boolean checkMatch(char[] textArr, char[] patternArr, int i, int m) {
for(int j = 0; j < m; j++,i++) {
if(textArr[i] != patternArr[j])
return false;
}
return true;
}
public static int rollingHash(char[] textArr, int textHash, int i, int m) {
return (textHash * base - modularExponentiation(base, m, mod) * (int)textArr[i] + (int) textArr[i+m])%mod;
}
public static int getHashForPatternSize(char[] arr, int m) {
int hash = 0;
for(int i = 0, p = m; i < m; i++, p--) {
hash = (hash%mod + calcHash(arr[i], p)%mod)%mod;
}
return hash;
}
public static int calcHash(char alphabet, int p) {
return (((int) alphabet)%mod * modularExponentiation(base, p, mod)%mod)%mod;
}
public static int modularExponentiation(int base, int p, int mod) {
if(p == 0)
return 1;
if(p%2 == 0)
return modularExponentiation((base*base)%mod, p/2, mod);
else
return (base*modularExponentiation((base*base)%mod, (p-1)/2, mod))%mod;
}
}
Problem is that textHash
and patternHash
do not match at any point. I am sure that the problem is with the mod operations. Can anyone tell how to have mod as well as to use the rolling hash correctly. I would be very thankful.
The usual way to compute a Rabin-Karp rolling hash is to consider the characters in big-endian order, rather than your little-endian solution. This makes the arithmetic much easier since it avoids division. Modular division is non-trivial and you cannot simply implement it as (p/q)%b
.
If we take the rolling hash as
H0…k-1 = (c0*ak-1 + c1*ak-2 + c2*ak-3 …+… ck-1*a0) mod b
Then the next term is:
H1…k = ( c1*ak-1 + c2*ak-2 …+… ck-1*a1 + ck*a0) mod b
And we can easily see that
H1…k = (a * H0…k-1 - c0*ak + ck) mod b
If we then precompute m == ak mod b
, that becomes:
H1…k = (a * H0…k-1 - m * c0 + ck) mod b
which is much less work on each iteration, and does not depend on division at all.