I am in the process of creating a Custom VGG model as a feature extractor of Faster RCNN model in Tensorflow object detection API. As mentioned on in the document https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/defining_your_own_model.md the feature extractor code consists of extract_proposal_features
and extract_classifier_features
. I am using TF slim code of creating the convolution layers (since they Tensorflow team uses it). As a reference please find the model structure of VGG 16 returned using by TF slim
([('vgg_16/conv1/conv1_1',
<tf.Tensor 'vgg_16/vgg_16/conv1/conv1_1/Relu:0' shape=(?, 224, 224, 64) dtype=float32>),
('vgg_16/conv1/conv1_2',
<tf.Tensor 'vgg_16/vgg_16/conv1/conv1_2/Relu:0' shape=(?, 224, 224, 64) dtype=float32>),
('vgg_16/vgg_16/pool1',
<tf.Tensor 'vgg_16/vgg_16/pool1/MaxPool:0' shape=(?, 112, 112, 64) dtype=float32>),
('vgg_16/conv2/conv2_1',
<tf.Tensor 'vgg_16/vgg_16/conv2/conv2_1/Relu:0' shape=(?, 112, 112, 128) dtype=float32>),
('vgg_16/conv2/conv2_2',
<tf.Tensor 'vgg_16/vgg_16/conv2/conv2_2/Relu:0' shape=(?, 112, 112, 128) dtype=float32>),
('vgg_16/vgg_16/pool2',
<tf.Tensor 'vgg_16/vgg_16/pool2/MaxPool:0' shape=(?, 56, 56, 128) dtype=float32>),
('vgg_16/conv3/conv3_1',
<tf.Tensor 'vgg_16/vgg_16/conv3/conv3_1/Relu:0' shape=(?, 56, 56, 256) dtype=float32>),
('vgg_16/conv3/conv3_2',
<tf.Tensor 'vgg_16/vgg_16/conv3/conv3_2/Relu:0' shape=(?, 56, 56, 256) dtype=float32>),
('vgg_16/conv3/conv3_3',
<tf.Tensor 'vgg_16/vgg_16/conv3/conv3_3/Relu:0' shape=(?, 56, 56, 256) dtype=float32>),
('vgg_16/vgg_16/pool3',
<tf.Tensor 'vgg_16/vgg_16/pool3/MaxPool:0' shape=(?, 28, 28, 256) dtype=float32>),
('vgg_16/conv4/conv4_1',
<tf.Tensor 'vgg_16/vgg_16/conv4/conv4_1/Relu:0' shape=(?, 28, 28, 512) dtype=float32>),
('vgg_16/conv4/conv4_2',
<tf.Tensor 'vgg_16/vgg_16/conv4/conv4_2/Relu:0' shape=(?, 28, 28, 512) dtype=float32>),
('vgg_16/conv4/conv4_3',
<tf.Tensor 'vgg_16/vgg_16/conv4/conv4_3/Relu:0' shape=(?, 28, 28, 512) dtype=float32>),
('vgg_16/vgg_16/pool4',
<tf.Tensor 'vgg_16/vgg_16/pool4/MaxPool:0' shape=(?, 14, 14, 512) dtype=float32>),
('vgg_16/conv5/conv5_1',
<tf.Tensor 'vgg_16/vgg_16/conv5/conv5_1/Relu:0' shape=(?, 14, 14, 512) dtype=float32>),
('vgg_16/conv5/conv5_2',
<tf.Tensor 'vgg_16/vgg_16/conv5/conv5_2/Relu:0' shape=(?, 14, 14, 512) dtype=float32>),
('vgg_16/conv5/conv5_3',
<tf.Tensor 'vgg_16/vgg_16/conv5/conv5_3/Relu:0' shape=(?, 14, 14, 512) dtype=float32>),
('vgg_16/vgg_16/pool5',
<tf.Tensor 'vgg_16/vgg_16/pool5/MaxPool:0' shape=(?, 7, 7, 512) dtype=float32>),
('vgg_16/fc6',
<tf.Tensor 'vgg_16/vgg_16/fc6/Relu:0' shape=(?, 1, 1, 4096) dtype=float32>),
('vgg_16/fc7',
<tf.Tensor 'vgg_16/vgg_16/fc7/Relu:0' shape=(?, 1, 1, 4096) dtype=float32>)])
My question is that, which convolution layer needs to be included and returned in extract_proposal_features
method and which convolution layers needs to be included and returned in extract_classifier_features
. Please let me know.
I've changed vgg slim code to get the right tensor.
def vgg_16(inputs,
num_classes=1000,
is_training=True,
dropout_keep_prob=0.5,
spatial_squeeze=True,
scope='vgg_16',
fc_conv_padding='VALID',
global_pool=False):
"""Oxford Net VGG 16-Layers version D Example.
Note: All the fully_connected layers have been transformed to conv2d layers.
To use in classification mode, resize input to 224x224.
Args:
inputs: a tensor of size [batch_size, height, width, channels].
num_classes: number of predicted classes. If 0 or None, the logits layer is
omitted and the input features to the logits layer are returned instead.
is_training: whether or not the model is being trained.
dropout_keep_prob: the probability that activations are kept in the dropout
layers during training.
spatial_squeeze: whether or not should squeeze the spatial dimensions of the
outputs. Useful to remove unnecessary dimensions for classification.
scope: Optional scope for the variables.
fc_conv_padding: the type of padding to use for the fully connected layer
that is implemented as a convolutional layer. Use 'SAME' padding if you
are applying the network in a fully convolutional manner and want to
get a prediction map downsampled by a factor of 32 as an output.
Otherwise, the output prediction map will be (input / 32) - 6 in case of
'VALID' padding.
global_pool: Optional boolean flag. If True, the input to the classification
layer is avgpooled to size 1x1, for any input size. (This is not part
of the original VGG architecture.)
Returns:
net: the output of the logits layer (if num_classes is a non-zero integer),
or the input to the logits layer (if num_classes is 0 or None).
end_points: a dict of tensors with intermediate activations.
"""
with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc:
end_points_collection = sc.original_name_scope + '_end_points'
# Collect outputs for conv2d, fully_connected and max_pool2d.
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
outputs_collections=end_points_collection):
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [2, 2], scope='pool5')
# Convert end_points_collection into a end_point dict.
end_points = slim.utils.convert_collection_to_dict(end_points_collection)
end_points['head'] = net
# Use conv2d instead of fully_connected layers.
net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6')
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='dropout6')
net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
if global_pool:
net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
end_points['global_pool'] = net
if num_classes:
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='dropout7')
net = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
scope='fc8')
if spatial_squeeze and num_classes is not None:
net = tf.squeeze(net, [1, 2], name='fc8/squeezed')
end_points[sc.name + '/fc8'] = net
return net, end_points
end_points['head']
= net is the tensor use to extract_proposal_features.
def _extract_proposal_features(self, preprocessed_inputs, scope):
"""Extracts first stage RPN features.
Args:
preprocessed_inputs: A [batch, height, width, channels] float32 tensor
representing a batch of images.
scope: A scope name.
Returns:
rpn_feature_map: A tensor with shape [batch, height, width, depth]
Raises:
InvalidArgumentError: If the spatial size of `preprocessed_inputs`
(height or width) is less than 33.
ValueError: If the created network is missing the required activation.
"""
preprocessed_inputs.get_shape().assert_has_rank(4)
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33),
tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)),
['image size must at least be 33 in both height and width.'])
with tf.control_dependencies([shape_assert]):
with tf.variable_scope('vgg_16', 'vgg_16', reuse=self._reuse_weights):
_, activations = vgg.vgg_16(
preprocessed_inputs,
scope=scope)
return activations['head']
and
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name (unused).
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
net = proposal_feature_maps
with tf.variable_scope('vgg_16', reuse=self._reuse_weights):
with slim.arg_scope(
[slim.conv2d],
stride=1,
padding='VALID'):
# Use conv2d instead of fully_connected layers.
fc6 = slim.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6')
if self._is_training:
fc6 = slim.dropout(fc6, keep_prob=0.5, is_training=True,
scope='dropout6')
fc7 = slim.conv2d(fc6, 4096, [1, 1], scope='fc7')
if self._is_training:
fc7 = slim.dropout(fc7, keep_prob=0.5, is_training=True,
scope='dropout7')
proposal_classifier_features = fc7
return proposal_classifier_features
I do like this. I do not know if it's the correct way :)
This is my test code.
import numpy as np
import tensorflow as tf
from models import faster_rcnn_vgg_16_feature_extractor as faster_rcnn_vgg_16
class FasterRcnnVgg16FeatureExtractorTest(tf.test.TestCase):
def _build_feature_extractor(self, first_stage_features_stride):
return faster_rcnn_vgg_16.FasterRCNNVgg16FeatureExtractor(
is_training=False,
first_stage_features_stride=first_stage_features_stride,
weight_decay=0.0005)
def test_extract_proposal_features_returns_expected_size(self):
feature_extractor = self._build_feature_extractor(
first_stage_features_stride=16)
preprocessed_inputs = tf.random_uniform(
[4, 224, 224, 3], maxval=255, dtype=tf.float32)
rpn_feature_map = feature_extractor.extract_proposal_features(
preprocessed_inputs, scope='TestScope')
features_shape = tf.shape(rpn_feature_map)
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
features_shape_out = sess.run(features_shape)
self.assertAllEqual(features_shape_out, [4, 7, 7, 512])
def test_extract_proposal_features_stride_eight(self):
feature_extractor = self._build_feature_extractor(
first_stage_features_stride=8)
preprocessed_inputs = tf.random_uniform(
[4, 224, 224, 3], maxval=255, dtype=tf.float32)
rpn_feature_map = feature_extractor.extract_proposal_features(
preprocessed_inputs, scope='TestScope')
features_shape = tf.shape(rpn_feature_map)
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
features_shape_out = sess.run(features_shape)
self.assertAllEqual(features_shape_out, [4, 7, 7, 512])
def test_extract_proposal_features_half_size_input(self):
feature_extractor = self._build_feature_extractor(
first_stage_features_stride=16)
preprocessed_inputs = tf.random_uniform(
[1, 112, 112, 3], maxval=255, dtype=tf.float32)
rpn_feature_map = feature_extractor.extract_proposal_features(
preprocessed_inputs, scope='TestScope')
features_shape = tf.shape(rpn_feature_map)
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
features_shape_out = sess.run(features_shape)
self.assertAllEqual(features_shape_out, [1, 4, 4, 512])
def test_extract_proposal_features_dies_on_invalid_stride(self):
with self.assertRaises(ValueError):
self._build_feature_extractor(first_stage_features_stride=99)
def test_extract_proposal_features_dies_on_very_small_images(self):
feature_extractor = self._build_feature_extractor(
first_stage_features_stride=16)
preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3))
rpn_feature_map = feature_extractor.extract_proposal_features(
preprocessed_inputs, scope='TestScope')
features_shape = tf.shape(rpn_feature_map)
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
with self.assertRaises(tf.errors.InvalidArgumentError):
sess.run(
features_shape,
feed_dict={preprocessed_inputs: np.random.rand(4, 32, 32, 3)})
def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self):
feature_extractor = self._build_feature_extractor(
first_stage_features_stride=16)
preprocessed_inputs = tf.random_uniform(
[224, 224, 3], maxval=255, dtype=tf.float32)
with self.assertRaises(ValueError):
feature_extractor.extract_proposal_features(
preprocessed_inputs, scope='TestScope')
def test_extract_box_classifier_features_returns_expected_size(self):
feature_extractor = self._build_feature_extractor(
first_stage_features_stride=16)
proposal_feature_maps = tf.random_uniform(
[3, 7, 7, 512], maxval=255, dtype=tf.float32)
proposal_classifier_features = (
feature_extractor.extract_box_classifier_features(
proposal_feature_maps, scope='TestScope'))
features_shape = tf.shape(proposal_classifier_features)
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
features_shape_out = sess.run(features_shape)
self.assertAllEqual(features_shape_out, [3, 1, 1, 4096])
if __name__ == '__main__':
tf.test.main()