I am trying to convert JSON to CSV file, that I can use for further analysis. Issue with my structure is that I have quite some nested dict/lists when I convert my JSON file.
I tried to use pandas json_normalize()
, but it only flattens first level.
import json
import pandas as pd
from pandas.io.json import json_normalize
from cs import CloudStack
api_key = xxxx
secret = xxxx
endpoint = xxxx
cs = CloudStack(endpoint=endpoint,
key=api_key,
secret=secret)
virtual_machines = cs.virtMach()
test = json_normalize(virtual_machines["virtualmachine"])
test.to_csv("test.csv", sep="|", index=False)
Any idea how to flatter whole JSON file, so I can create single line input to CSV file for single (in this case virtual machine) entry? I have tried couple of solutions posted here, but my result was always only first level was flattened.
This is sample JSON (in this case, I still get "securitygroup" and "nic" output as JSON format:
{
"count": 13,
"virtualmachine": [
{
"id": "1082e2ed-ff66-40b1-a41b-26061afd4a0b",
"name": "test-2",
"displayname": "test-2",
"securitygroup": [
{
"id": "9e649fbc-3e64-4395-9629-5e1215b34e58",
"name": "test",
"tags": []
}
],
"nic": [
{
"id": "79568b14-b377-4d4f-b024-87dc22492b8e",
"networkid": "05c0e278-7ab4-4a6d-aa9c-3158620b6471"
},
{
"id": "3d7f2818-1f19-46e7-aa98-956526c5b1ad",
"networkid": "b4648cfd-0795-43fc-9e50-6ee9ddefc5bd",
"traffictype": "Guest"
}
],
"hypervisor": "KVM",
"affinitygroup": [],
"isdynamicallyscalable": false
}
]
}
I used the following function (details can be found here):
def flatten_data(y):
out = {}
def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x
flatten(y)
return out
This unfortunately completely flattens whole JSON, meaning that if you have multi-level JSON (many nested dictionaries), it might flatten everything into single line with tons of columns.
What I used, in the end, was json_normalize()
and specified structure that I required. A nice example of how to do it that way can be found here.