I'm developing an android app to recognize text in particular plate, as in photo here:
I have to recognize the texts in white (e.g. near to "Mod."). I'm using Google ML Kit's text recognition APIs, but it fails. So, I'm using OpenCV to edit image but I don't know how to emphasize the (white) texts so OCR recognize it. I tried more stuff, like contrast, brightness, gamma correction, adaptive thresholding, but the cases vary a lot depending on how the photo is taken. Do you have any ideas? Thank u very much.
I coded this example in Python (since OpenCV's SIFT in Android is paid) but you can still use this to understand how to solve it.
First I created this image as a template:
Step 1: Load images
""" 1. Load images """
# load image of plate
src_path = "nRHzD.jpg"
src = cv2.imread(src_path)
# load template of plate (to be looked for)
src_template_path = "nRHzD_template.jpg"
src_template = cv2.imread(src_template_path)
Step 2: Find the template using SIFT and perspective transformation
# convert images to gray scale
src_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
src_template_gray = cv2.cvtColor(src_template, cv2.COLOR_BGR2GRAY)
# use SIFT to find template
n_matches_min = 10
template_found, homography = find_template(src_gray, src_template_gray, n_matches_min)
warp = transform_perspective_and_crop(homography, src, src_gray, src_template)
warp_gray = cv2.cvtColor(warp, cv2.COLOR_BGR2GRAY)
warp_hsv = cv2.cvtColor(warp, cv2.COLOR_BGR2HSV)
template_hsv = cv2.cvtColor(src_template, cv2.COLOR_BGR2HSV)
Step 3: Find regions of interest (using the green parts of the template image)
green_hsv_lower_bound = [50, 250, 250]
green_hsv_upper_bound = [60, 255, 255]
mask_rois, mask_rois_img = crop_img_in_hsv_range(warp, template_hsv, green_hsv_lower_bound, green_hsv_upper_bound)
roi_list = separate_rois(mask_rois, warp_gray)
# sort the rois by distance to top right corner -> x (value[1]) + y (value[2])
roi_list = sorted(roi_list, key=lambda values: values[1]+values[2])
Step 4: Apply a Canny Edge detection to the rois (regions of interest)
for i, roi in enumerate(roi_list):
roi_img, roi_x_offset, roi_y_offset = roi
print("#roi:{} x:{} y:{}".format(i, roi_x_offset, roi_y_offset))
roi_img_blur_threshold = cv2.Canny(roi_img, 40, 200)
cv2.imshow("ROI image", roi_img_blur_threshold)
cv2.waitKey()
There are many ways for you to detect the digits, one of the easiest approaches is to run a K-Means Clustering on each of the contours.
Full code:
""" This code shows a way of getting the digit's edges in a pre-defined position (in green) """
import cv2
import numpy as np
def find_template(src_gray, src_template_gray, n_matches_min):
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
""" find grid using SIFT """
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(src_template_gray, None)
kp2, des2 = sift.detectAndCompute(src_gray, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good) > n_matches_min:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h_template, w_template = src_template_gray.shape
pts = np.float32([[0, 0], [0, h_template - 1], [w_template - 1, h_template - 1], [w_template - 1,0]]).reshape(-1,1,2)
homography = cv2.perspectiveTransform(pts, M)
else:
print "Not enough matches are found - %d/%d" % (len(good), n_matches_min)
matchesMask = None
# show matches
draw_params = dict(matchColor = (0, 255, 0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)
if matchesMask:
src_gray_copy = src_gray.copy()
sift_matches = cv2.polylines(src_gray_copy, [np.int32(homography)], True, 255, 2, cv2.LINE_AA)
sift_matches = cv2.drawMatches(src_template_gray, kp1, src_gray_copy, kp2, good, None, **draw_params)
return sift_matches, homography
def transform_perspective_and_crop(homography, src, src_gray, src_template_gray):
""" get mask and contour of template """
mask_img_template = np.zeros(src_gray.shape, dtype=np.uint8)
mask_img_template = cv2.polylines(mask_img_template, [np.int32(homography)], True, 255, 1, cv2.LINE_AA)
_ret, contours, hierarchy = cv2.findContours(mask_img_template, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
template_contour = None
# approximate the contour
c = contours[0]
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
# if our approximated contour has four points, then
# we can assume that we have found our template
warp = None
if len(approx) == 4:
template_contour = approx
cv2.drawContours(mask_img_template, [template_contour] , -1, (255,0,0), -1)
""" Transform perspective """
# now that we have our template contour, we need to determine
# the top-left, top-right, bottom-right, and bottom-left
# points so that we can later warp the image -- we'll start
# by reshaping our contour to be our finals and initializing
# our output rectangle in top-left, top-right, bottom-right,
# and bottom-left order
pts = template_contour.reshape(4, 2)
rect = np.zeros((4, 2), dtype = "float32")
# the top-left point has the smallest sum whereas the
# bottom-right has the largest sum
s = pts.sum(axis = 1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# compute the difference between the points -- the top-right
# will have the minumum difference and the bottom-left will
# have the maximum difference
diff = np.diff(pts, axis = 1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
# now that we have our rectangle of points, let's compute
# the width of our new image
(tl, tr, br, bl) = rect
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
# ...and now for the height of our new image
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
# take the maximum of the width and height values to reach
# our final dimensions
maxWidth = max(int(widthA), int(widthB))
maxHeight = max(int(heightA), int(heightB))
# construct our destination points which will be used to
# map the screen to a top-down, "birds eye" view
homography = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype = "float32")
# calculate the perspective transform matrix and warp
# the perspective to grab the screen
M = cv2.getPerspectiveTransform(rect, homography)
warp = cv2.warpPerspective(src, M, (maxWidth, maxHeight))
# resize warp
h_template, w_template, _n_channels = src_template_gray.shape
warp = cv2.resize(warp, (w_template, h_template), interpolation=cv2.INTER_AREA)
return warp
def crop_img_in_hsv_range(img, hsv, lower_bound, upper_bound):
mask = cv2.inRange(hsv, np.array(lower_bound), np.array(upper_bound))
# do an MORPH_OPEN (erosion followed by dilation) to remove isolated pixels
kernel = np.ones((5,5), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# Bitwise-AND mask and original image
res = cv2.bitwise_and(img, img, mask=mask)
return mask, res
def separate_rois(column_mask, img_gray):
# go through each of the boxes
# https://stackoverflow.com/questions/41592039/contouring-a-binary-mask-with-opencv-python
border = cv2.copyMakeBorder(column_mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0)
_, contours, hierarchy = cv2.findContours(border, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE, offset=(-1, -1))
cell_list = []
for contour in contours:
cell_mask = np.zeros_like(img_gray) # Create mask where white is what we want, black otherwise
cv2.drawContours(cell_mask, [contour], -1, 255, -1) # Draw filled contour in mask
# turn that mask into a rectangle
(x,y,w,h) = cv2.boundingRect(contour)
#print("x:{} y:{} w:{} h:{}".format(x, y, w, h))
cv2.rectangle(cell_mask, (x, y), (x+w, y+h), 255, -1)
# copy the img_gray using that mask
img_tmp_region = cv2.bitwise_and(img_gray, img_gray, mask= cell_mask)
# Now crop
(y, x) = np.where(cell_mask == 255)
(top_y, top_x) = (np.min(y), np.min(x))
(bottom_y, bottom_x) = (np.max(y), np.max(x))
img_tmp_region = img_tmp_region[top_y:bottom_y+1, top_x:bottom_x+1]
cell_list.append([img_tmp_region, top_x, top_y])
return cell_list
""" 1. Load images """
# load image of plate
src_path = "nRHzD.jpg"
src = cv2.imread(src_path)
# load template of plate (to be looked for)
src_template_path = "nRHzD_template.jpg"
src_template = cv2.imread(src_template_path)
""" 2. Find the plate (using the template image) and crop it into a rectangle """
# convert images to gray scale
src_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
src_template_gray = cv2.cvtColor(src_template, cv2.COLOR_BGR2GRAY)
# use SIFT to find template
n_matches_min = 10
template_found, homography = find_template(src_gray, src_template_gray, n_matches_min)
warp = transform_perspective_and_crop(homography, src, src_gray, src_template)
warp_gray = cv2.cvtColor(warp, cv2.COLOR_BGR2GRAY)
warp_hsv = cv2.cvtColor(warp, cv2.COLOR_BGR2HSV)
template_hsv = cv2.cvtColor(src_template, cv2.COLOR_BGR2HSV)
""" 3. Find regions of interest (using the green parts of the template image) """
green_hsv_lower_bound = [50, 250, 250]
green_hsv_upper_bound = [60, 255, 255]
mask_rois, mask_rois_img = crop_img_in_hsv_range(warp, template_hsv, green_hsv_lower_bound, green_hsv_upper_bound)
roi_list = separate_rois(mask_rois, warp_gray)
# sort the rois by distance to top right corner -> x (value[1]) + y (value[2])
roi_list = sorted(roi_list, key=lambda values: values[1]+values[2])
""" 4. Apply a Canny Edge detection to the rois (regions of interest) """
for i, roi in enumerate(roi_list):
roi_img, roi_x_offset, roi_y_offset = roi
print("#roi:{} x:{} y:{}".format(i, roi_x_offset, roi_y_offset))
roi_img_blur_threshold = cv2.Canny(roi_img, 40, 200)
cv2.imshow("ROI image", roi_img_blur_threshold)
cv2.waitKey()