In R I have writing this function
ifun = function(m) {
o=c()
for(k in 1:m) {
o[k]= prod(1:k)/ prod(2*(1:k)+1 )
}
o_sum=2*(1+sum(o)) # Final result
print(o_sum)
}
I want the values for ifun()
for high values. For example
sprintf("%.100f",ifun(170) )
gives this output:
[1] 3.141593
[1] "3.1415926535897931159979634685441851615905761718750000000000000000000000000000000000000000000000000000"
But when I take higher values it can give me any value. For example
sprintf("%.100f",ifun(180) )
gives me this output
[1] NaN
[1] "NaN"
How can I rewrite me code so I can take ifun
for larger values?
Also, I use this function to approximate pi but for
> ifun(x>50)
it gives me the same result over and over again and don't make my approximation any better.
I tried to use the method on Macin series as well I wrote this in R
mac = function(m, approx=TRUE){
o1 = as.bigq(NULL)
o2 = as.bigq(NULL)
for(k in 1:m) {
k <- as.bigq(k)
o1 = c(o1, 1/((2*k+1)*5^(2*k+1)) *(-1)^k)
o2 = c(o2, 1/((2*k+1)*239^(2*k+1)) *(-1)^k)
}
o_sum = 16*(1/5+sum(o1)) -4*(1/239+sum(o2))
if(approx){
as.numeric(o_sum)
} else{
o_sum } }
library(Rmpfr) x <- mac(250, approx=FALSE) mpfr(x,256)
This gives me a strange output namely
> 1 'mpfr' number of precision 256 bits [1]
> 3.1415926535897934 18913264129286527160857809883357101405
It only gives me the first 16 correct digits, it can't give me more. What can be the reason for this?
Use gmp
. It can give the exact result as a rational number if you want.
library(gmp)
ifun = function(m, approx=TRUE){
o = as.bigq(NULL)
for(k in 1:m) {
r <- as.bigz(1:k)
o = c(o, prod(r)/ prod(2*r+1 ))
}
o_sum = 2*(1+sum(o))
if(approx){
as.numeric(o_sum)
}else{
o_sum
}
}
> ifun(4, approx=FALSE)
Big Rational ('bigq') :
[1] 976/315
> ifun(180)
[1] 3.141593
Actually to convert the exact rational number to a decimal number, it is better to use the Rmpfr
library:
> library(Rmpfr)
> x <- ifun(250, approx=FALSE)
> mpfr(x,256)
1 'mpfr' number of precision 256 bits
[1] 3.14159265358979323846264338327950288419716939937510582097494459230781640628613