pythonorbitsatellite

Compute off-nadir angle of vector from satellite to ground


I'd like to write Python code to specify the orbit of a satellite with Keplerian elements, specify a point on the Earth with latitude, longitude, and altitude, specify a time, and compute the angle between two vectors:
- the vector from the satellite to the specified point on the Earth
- the vector from the satellite to the center of the Earth.

I know I can use poliastro to define the orbit and propagate it to the specified time. The hard part is representing the satellite and the Earth point in the same coordinate system.


Solution

  • poliastro currently doesn't specify a coordinate system. Someone in their chat room told me that Earth orbits are in GCRS. astropy can convert GCRS to ITRS, which is an Earth-centered Earth-fixed frame:

    import math
    import numpy as np
    from astropy import units as u
    from astropy.time import Time
    from poliastro.bodies import Earth
    from poliastro.twobody import Orbit
    from astropy.coordinates import SkyCoord
    
    def lla2ecef(lat, lon, alt):
        """ Convert lat/lon/alt to cartesian position in ECEF frame.
    
        Origin is center of Earth. +x axis goes through lat/lon (0, 0).
        +y axis goes through lat/lon (0, 90). +z axis goes through North Pole.
    
        lat: number, geodetic latitude in degrees
        lon: number, longitude in degrees
        alt: number, altitude above WGS84 ellipsoid, in km
    
        Returns: tuple (x, y, z) coordinates, in km.
    
        Source: "Department of Defense World Geodetic System 1984"
        Page 4-4
        National Imagery and Mapping Agency
        Last updated June, 2004
        NIMA TR8350.2
        """
    
        lon = lon * math.pi/180.0  # Convert to radians
        lat = lat * math.pi/180.0  # Convert to radians
    
        # WGS84 ellipsoid constants:
        a = 6378.137 #equatorial radius, in km
        e = 8.1819190842622e-2
    
        # intermediate calculation: prime vertical radius of curvature
        N =  a/math.sqrt(1 - e**2*math.sin(lat)**2)
    
        #results
        x = (N + alt)*math.cos(lat)*math.cos(lon)
        y = (N + alt)*math.cos(lat)*math.sin(lon)
        z = ((1 - e**2)*N + alt)*math.sin(lat)
    
        return (x, y, z)
    
    epoch = Time(2018, format='decimalyear', scale='tai') #01-01-2018 00:00:00, in TAI
    propagation_time = 9000 #seconds
    semi_major_axis = 10000 #km
    eccentricity = 0.1
    inclination = 50 #deg
    raan = 70 #deg
    arg_perigee = 60 #deg
    true_anomaly = 80 #deg
    orbit = Orbit.from_classical(
        Earth, 
        semi_major_axis*u.km, 
        eccentricity*u.one,  
        inclination*u.deg, raan*u.deg, 
        arg_perigee*u.deg, 
        true_anomaly*u.deg, 
        epoch)
    propagated_orbit = orbit.propagate(propagation_time*u.s)
    pos_gcrs = propagated_orbit.state.r
    sky_gcrs = SkyCoord(
        representation_type='cartesian', 
        x=pos_gcrs[0], y=pos_gcrs[1], z=pos_gcrs[2],
        frame='gcrs',
        obstime=(epoch + propagation_time*u.s))
    pos_ecef = sky_gcrs.transform_to('itrs')
    pos_s = np.array((pos_ecef.x.to(u.km).value, 
                      pos_ecef.y.to(u.km).value, 
                      pos_ecef.z.to(u.km).value))
    
    lat = 40 #deg
    lon = 50 #deg
    alt = 0.06 #km
    pos_t = np.array(lla2ecef(lat, lon, alt))
    
    #Compute angle at satellite between target and center of earth
    v1 = pos_t - pos_s
    v2 = -pos_s
    angle = math.acos(np.dot(v1, v2)/(np.linalg.norm(v1)*np.linalg.norm(v2)))
    
    #convert to degrees
    angle = angle*180.0/math.pi