I have the following example data set that I want to transform/reduce using the Java Stream API based on direction
's value
Direction int[]
IN 1, 2
OUT 3, 4
OUT 5, 6, 7
IN 8
IN 9
IN 10, 11
OUT 12, 13
IN 14
to
Direction int[]
IN 1, 2,
OUT 3, 4, 5, 6, 7
IN 8, 9, 10, 11
OUT 12, 13
IN 14
Code that I've written so far:
enum Direction { IN, OUT }
class Tuple {
Direction direction;
int[] data;
public Tuple merge(Tuple t) {
return new Tuple(direction, concat(getData(), t.getData()));
}
}
private static int[] concat(int[] first, int[] second) {
int[] result = Arrays.copyOf(first, first.length + second.length);
System.arraycopy(second, 0, result, first.length, second.length);
return result;
}
List<Tuple> reduce = tupleStream.reduce(new ArrayList<>(), WDParser::add, WDParser::combine);
private static List<Tuple> combine(List<Tuple> list1, List<Tuple> list2) {
System.out.println("combine");
list1.addAll(list2);
return list1;
}
private static List<Tuple> add(List<Tuple> list, Tuple t) {
System.out.println("add");
if (list.size() == 0) {
list.add(t);
} else if (list.size() > 0) {
int lastIndex = list.size() - 1;
Tuple last = list.get(lastIndex);
if (last.getDirection() == t.getDirection())
list.set(lastIndex, last.merge(t));
else
list.add(t);
}
return list;
}
I believe there is a better and simpler alternative to achieving the same.
Online examples and blogs I've found for Java Stream API reduce/combine use the Integer::sum
function only. I'm hoping to build this up for more complex case scenarios.
I think your solution is pretty nice already, especially as using a reduction enables parallelism easily compared to collecting into a shared outside container. But it's easier to use collect
instead of reduce
as Holger pointed out. Furthermore, the conditions in the accumulator can be simplified a bit, and you forgot to merge the last and first elements in the combiner:
List<Tuple> reduce = tupleStream.collect(ArrayList::new, WDParser::add, WDParser::combine);
private static List<Tuple> combine(List<Tuple> list1, List<Tuple> list2)
{
if (!list2.isEmpty())
{
add(list1, list2.remove(0)); // merge lists in the middle if necessary
list1.addAll(list2); // add all the rest
}
return list1;
}
private static List<Tuple> add(List<Tuple> list, Tuple t)
{
int lastIndex = list.size() - 1;
if (list.isEmpty() || list.get(lastIndex).getDirection() != t.getDirection())
{
list.add(t);
}
else
{
list.set(lastIndex, list.get(lastIndex).merge(t));
}
return list;
}
Instead of using indexes to access the first/last element you could even use LinkedList
and the methods add/removeFirst/Last()
.