I have a C program that aims to be run in parallel on several processors. I need to be able to record the execution time (which could be anywhere from 1 second to several minutes). I have searched for answers, but they all seem to suggest using the clock()
function, which then involves calculating the number of clocks the program took divided by the Clocks_per_second
value.
I'm not sure how the Clocks_per_second
value is calculated?
In Java, I just take the current time in milliseconds before and after execution.
Is there a similar thing in C? I've had a look, but I can't seem to find a way of getting anything better than a second resolution.
I'm also aware a profiler would be an option, but am looking to implement a timer myself.
Thanks
CLOCKS_PER_SEC
is a constant which is declared in <time.h>
. To get the CPU time (not the wall time) used by a task within a C application, use:
clock_t begin = clock();
/* here, do your time-consuming job */
clock_t end = clock();
double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
Note that this returns the time as a floating point type. This can be more precise than a second (e.g. you measure 4.52 seconds). Precision depends on the architecture; on modern systems you easily get 10ms or lower, but on older Windows machines (from the Win98 era) it was closer to 60ms.
clock()
is standard C; it works "everywhere". There are system-specific functions, such as getrusage()
on Unix-like systems.
Java's System.currentTimeMillis()
does not measure the same thing. It is a "wall clock": it can help you measure how much time it took for the program to execute, but it does not tell you how much CPU time was used. On a multitasking systems (i.e. all of them), these can be widely different.