This is a MATLAB function from the author of RainbowCrack:
function ret = calc_success_probability(N, t, m)
arr = zeros(1, t - 1);
arr(1) = m;
for i = 2 : t - 1
arr(i) = N * (1 - (1 - 1 / N) ^ arr(i - 1));
end
exp = 0;
for i = 1 : t - 1
exp = exp + arr(i);
end
ret = 1 - (1 - 1 / N) ^ exp;
It calculates the probability of success in finding a plaintext password given a rainbow table with keyspace N
, a large unsigned integer, chain of length t
, and number of chains m
.
A sample run:
calc_success_probability(80603140212, 2400, 40000000)
Returns 0.6055.
I am having difficulty converting this into Python. In Python 3, there is no max integer anymore, so N
isn't an issue. I think in the calculations I have to force everything to a large floating point number, but I'm not sure.
I also don't know the order of operations in MATLAB. I think the code is saying this:
Create array of size [1 .. 10] so ten elements Initialize every element of that array with zero
In zero-based indexing, I think this would be array[0 .. t-1]
, it looks like MATLAB uses 1 as the first (0'th) index.
Then second element of array (0-based indexing) initialized to m
.
For each element in array, pos=1
(0-based indexing) to t-1
:
array[pos] = N * (1 - (1 - 1/N) ** array[pos-1]
Where **
is the power operator. I think power is ^
in MATLAB, so N * (1 - (1-1/N)
to the array[pos-1]
power is like that above.
Then set an exponent. For each element in array 0 to t-1
:
exponent is exponent + 1
return probability = 1 - (1 - 1/N)
power of exp;
My Python code looks like this, and doesn't work. I can't figure out why, but it could be that I don't understand MATLAB enough, or Python, both, or I'm reading the math wrong somehow and what's going on in MATLAB is not what I'm expecting, i.e. I have order of operations and/or types wrong to make it work and I'm missing something in those terms...
def calc_success_probability(N, t, m):
comp_arr = []
# array with indices 1 to t-1 in MATLAB, which is otherwise 0 to t-2???
# range with 0, t is 0 to t excluding t, so t here is t-1, t-1 is up
# to including t-2... sounds wrong...
for i in range(0, t-1):
# initialize array
comp_arr.append(0)
print("t = {0:d}, array size is {1:d}".format(t, len(comp_arr)))
# zero'th element chain count
comp_arr[0] = m
for i in range(1, t-1):
comp_arr[i] = N * (1 - (1 - 1 / N)) ** comp_arr[i-1]
final_exp = 0
for i in range(0, t-1):
final_exp = final_exp + comp_arr[i]
probability = (1 - (1 - 1 / N)) ** final_exp
return probability
Watch your brackets! You have translated this:
arr(i) = N * ( 1 - ( 1 - 1 / N ) ^ arr(i - 1) );
to this:
comp_arr[i] = N * ( 1 - ( 1 - 1 / N ) ) ** comp_arr[i-1]
I've lined up everything so you can better see where it goes wrong. You've moved a bracket to the wrong location.
It should be:
comp_arr[i] = N * ( 1 - ( 1 - 1 / N ) ** comp_arr[i-1] )
Similarly,
ret = 1 - (1 - 1 / N) ^ exp;
is not the same as
probability = (1 - (1 - 1 / N)) ** final_exp
This should be
probability = 1 - (1 - 1 / N) ** final_exp