Here is a hypothetical scenario with multiindex dataframes in pandas. Trying to merge them will result in an error. Do I have to do reset_index()
on either dataframe to make this work?
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index1 = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
index2 = pd.MultiIndex.from_tuples(tuples, names=['third', 'fourth'])
s1 = pd.DataFrame(np.random.randn(8), index=index1, columns=['s1'])
s2 = pd.DataFrame(np.random.randn(8), index=index2, columns=['s2'])
Attempted merges:
s1.merge(s2, how='left', left_index=True, right_index=True)
ValueError: cannot join with no overlapping index names
. Tested with Pandas 2.2.3s1.merge(s2, how='left', left_on=['first', 'second'], right_on=['third', 'fourth'])
Seems like you need to use a combination of them.
s1.merge(s2, left_index=True, right_on=['third', 'fourth'])
#s1.merge(s2, right_index=True, left_on=['first', 'second'])
s1 s2
bar one 0.765385 -0.365508
two 1.462860 0.751862
baz one 0.304163 0.761663
two -0.816658 -1.810634
foo one 1.891434 1.450081
two 0.571294 1.116862
qux one 1.056516 -0.052927
two -0.574916 -1.197596