Given boost::bind
or the std::
equivalents, I can make this:
int f(int a, int b)
{
return a + b;
}
auto f_two = boost::bind(f, 1, 1);
So that f_two()
will return 2 by effectively calling an intermediate function that calls f(1, 1)
via whatever implementation mechanism, perhaps something along the lines of:
double f_two_caller()
{
return f(stored_arg_1, stored_arg_2);
}
However, my use case is that I would want to bind a prefix function so instead I could say:
auto f_print = boost::bind(printf, "Hello, world!\n");
auto f_print_and_two = boost::bind_with_prefix(f, f_print, 1, 1);
So f_print_and_two()
effectively executes:
double f_print_and_two_caller()
{
f_print(f_print.stored_arg_1);
return f(stored_arg_1, stored_arg_2);
}
I'm sure there's a proper name for this technique that I could use to look up the solution, but I can't think of it right now...
template<class First, class Second>
struct compose_t {
First first;
Second second;
template<class...Args>
auto operator()(Args&&...args)
-> decltype( std::declval<Second&>()( std::declval<First&>()( std::declval<Args>()... ) ) )
{ return second(first( std::forward<Args>(args)... ) ); }
};
template<class First, class Second>
compose_t<typename std::decay<First>::type, typename std::decay<Second>::type>
compose( First&& first, Second&& second ){ return {std::forward<First>(first), std::forward<Second>(second)}; }
this is functional composition.
auto f_print = std::bind(printf, "Hello, world!\n");
auto f_print_and_two = std::bind( compose(f, f_print), 1, 1 );
int main() {
f_print_and_two();
}
and done.
Note that function composition can be chained. You can even write a variardic compose
function based on the above.