I am trying to benchmark (with Criterion) a function, which uses a recursive data type. I found a similar question with an answer that I haven't been able to apply for my case. For non-recursive data types, the following works:
data ExampleDataType1 a =
ValueConst1 String String String String
| ValueConst2 String String
| ValueConst3 a
| ValueConst4 String
deriving (Show, Eq, Ord)
instance DeepSeq.NFData a => DeepSeq.NFData (ExampleDataType1 a) where
rnf (ValueConst1 c1 c2 c3 c4) = DeepSeq.rnf c1 `seq` DeepSeq.rnf c2 `seq` DeepSeq.rnf c3 `seq` DeepSeq.rnf c4
rnf (ValueConst2 c1 c2) = DeepSeq.rnf c1 `seq` DeepSeq.rnf c2
rnf (ValueConst3 c1) = DeepSeq.rnf c1
rnf (ValueConst4 c2) = DeepSeq.rnf c2
However, doing the following:
infixl 6 :+: -- Addition
infixl 7 :*: -- Multiplication
data ExampleDataType2 a =
ValueConst5 (ExampleDataType2 a)
| a :*: String
| (ExampleDataType2 a) :+: (ExampleDataType2 a)
| ValueConst6 String a
| ValueConst7 String a
deriving (Show, Eq, Ord)
type MapExample a b = Map.Map String (Either (ExampleDataType1 a) (ExampleDataType2 b))
data ExampleDataType3 a b = ExampleDataType3 {
start :: String,
mapList :: [MapExample a b]
} deriving Show
instance DeepSeq.NFData a => DeepSeq.NFData (ExampleDataType1 a) where
rnf (ValueConst1 c1 c2 c3 c4) = DeepSeq.rnf c1 `seq` DeepSeq.rnf c2 `seq` DeepSeq.rnf c3 `seq` DeepSeq.rnf c4
rnf (ValueConst2 c1 c2) = DeepSeq.rnf c1 `seq` DeepSeq.rnf c2
rnf (ValueConst3 c1) = DeepSeq.rnf c1
rnf (ValueConst4 c2) = DeepSeq.rnf c2
instance DeepSeq.NFData b => DeepSeq.NFData (ExampleDataType2 b) where
rnf (ValueConst5 c1) = DeepSeq.rnf c1
rnf (val1 :+: val2) = DeepSeq.rnf val1 `seq` DeepSeq.rnf val2
rnf (val :*: str) = DeepSeq.rnf val `seq` DeepSeq.rnf str
rnf (ValueConst6 str val) = DeepSeq.rnf str `seq` DeepSeq.rnf val
rnf (ValueConst7 str val) = DeepSeq.rnf str `seq` DeepSeq.rnf val
instance (DeepSeq.NFData a, DeepSeq.NFData b) => DeepSeq.NFData (ExampleDataType3 a b) where
rnf (ExampleDataType3 s lst) = DeepSeq.rnf s `seq` DeepSeq.rnf lst
results in an error, when calling the nf
function of Criterion.Main
on the function I wish to benchmark, which has the signature testFunction :: (Show a1, Integral a1, Num a2, Eq a2) => [[a1]] -> ExampleDataType3 a2 a1
:
• Ambiguous type variable ‘a20’ arising from a use of ‘nf’
prevents the constraint ‘(Control.DeepSeq.NFData
a20)’ from being solved.
Probable fix: use a type annotation to specify what ‘a20’ should be.
These potential instances exist:
instance [safe] (Control.DeepSeq.NFData a,
Control.DeepSeq.NFData b) =>
Control.DeepSeq.NFData (Either a b)
-- Defined in ‘Control.DeepSeq’
instance (Control.DeepSeq.NFData k, Control.DeepSeq.NFData a) =>
Control.DeepSeq.NFData (Map.Map k a)
-- Defined in ‘Data.Map.Internal’
instance Control.DeepSeq.NFData a =>
Control.DeepSeq.NFData (Set.Set a)
-- Defined in ‘Data.Set.Internal’
...plus 20 others
...plus 150 instances involving out-of-scope types
(use -fprint-potential-instances to see them all)
I would appreciate every answer on how one should fully evaluate a recursive data type.
Edit 1:
The benchmark call that causes the error:
main = defaultMain [
bgroup "TestCases" [ bench "Case 1" $ nf testFunction [[1,0,1,1],[0,0,0,1],[1,1,1,0],[0,1,0,1]]
]]
The function testFunction
does its job as desired except I fail to fully evaluate the recursive data type so that nf
function of Criterion can accept my function as an input. Therefore, I would like to avoid changing the data type.
You can add a type signature to testFunction
where you pass it to nf
. Something like:
nf (testFunction :: [[Int]] -> ExampleDataType3 Double Int) [[1,0,1,1],[0,0,0,1],[1,1,1,0],[0,1,0,1]]
I picked the type Double; you may pick some other type. Since there are several options, GHC gives the Ambiguous type variable
error rather than arbitrarily picking one.