I am trying to draw a butterfly curve using Java
.
Here's the parametric equation for the mentioned curve:
From what I remember from the college, the way to draw a parametric equation with Java
is the next:
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D)g;
g2.translate(300,300);
int x1,y1;
int x0 = 0;
int y0 = (int)(Math.E-2); //for x = 0, we get y = Math.E - 2
int nPoints = 1000;
g2.scale(30,-30);
for(int i=0;i<nPoints;i++) {
double t= 12*i*Math.PI/nPoints; //to make it between 0 and 12*PI.
x1=(int)(Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
y1 = (int)(Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
g2.drawLine(x0,y0,x1,y1);
x0=x1;
y0=y1;
}
}
Now, this gave me the next result:
Okay, this is so far away from the expected result.
I then decided to try it using Line2D.Double
thinking that this would give a more accurate drawing.
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D)g;
g2.translate(300,300);
double x1,y1;
double x0 = 0;
int nPoints = 500;
g2.scale(30,-30);
double y0 = Math.E-2;
for(int i=0;i<nPoints;i++) {
double t= 12*i*Math.PI/nPoints;
x1=(Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
y1 = (Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
g2.draw(new Line2D.Double(x0,y0,x1,y1));
x0=x1;
y0=y1;
}
}
Which yielded the next result:
Okay, this surely looks better, but not the expected result for sure.
Hence I am asking, is there a way to draw the most accurate curve using this parametric equation with Java
?
It doesn't have to look 100% like the image above, but the closest.
Your scale-statement scales also the width of your line causing the strange shape of your curve. There are two easy ways to solve te problem:
Reduce the width of your line, e.g. to 0.01f:
Graphics2D g2 = (Graphics2D)g;
g2.translate(300,300);
double x1,y1;
double x0 = 0;
int nPoints = 500;
// Alternative 1 ---------------------
g2.scale(30,-30);
g2.setStroke(new BasicStroke(0.01f ));
// -----------------------------------
double y0 = Math.E-2;
for(int i=0;i<nPoints;i++) {
double t= 12*i*Math.PI/nPoints;
x1= (Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
y1 = (Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
g2.draw(new Line2D.Double(x0,y0,x1,y1));
x0=x1;
y0=y1;
}
This results in:
Remove your scale-statement and scale the curve using its amplitude i.e. use a constant prefactor concerning your x- and y-values, e.g. -30:
Graphics2D g2 = (Graphics2D)g;
g2.translate(300,300);
double x1,y1;
double x0 = 0;
int nPoints = 500;
// Alternative 2 ---------------------
double amp = -30.0;
// -----------------------------------
double y0 = Math.E-2;
for(int i=0;i<nPoints;i++) {
double t= 12*i*Math.PI/nPoints;
// Alternative 2 ----------------------------------------------------------------------------------
x1=amp*(Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
y1=amp*(Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
// ------------------------------------------------------------------------------------------------
g2.draw(new Line2D.Double(x0,y0,x1,y1));
x0=x1;
y0=y1;
}
This results in (which is more or less identical):
Moreover you can enhance the quality of your plot by using an antialiasing and an increase of nPoints:
Graphics2D g2 = (Graphics2D)g;
// Optimization ------------------------------------
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
int nPoints = 1500;
// -------------------------------------------------
g2.translate(300,300);
double x1,y1;
double x0 = 0;
// Alternative 1 ---------------------
g2.scale(50,-50);
g2.setStroke(new BasicStroke(0.01f ));
// -----------------------------------
double y0 = Math.E-2;
for(int i=0;i<nPoints;i++) {
double t= 12*i*Math.PI/nPoints;
x1= (Math.sin(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
y1 = (Math.cos(t)*(Math.pow(Math.E,Math.cos(t))-2*Math.cos(4*t)-Math.pow(Math.sin(t/12),5)));
g2.draw(new Line2D.Double(x0,y0,x1,y1));
x0=x1;
y0=y1;
}
This results in (which looks much better):
So far, the connection between two points is a straight line. Sure, you can use splines (Bezier etc.) for further optimization, but probably that is not trivial.