pythongoogle-cloud-platformgoogle-natural-language

AttributeError: 'LanguageServiceClient' object has no attribute 'classify_text'


I'm trying to classify some text and have the following code:

from google.cloud import language
from google.cloud.language import enums
from google.cloud.language import types


def classify_text(text):
    """Classifies content categories of the provided text."""
    client = language.LanguageServiceClient()

    if isinstance(text, six.binary_type):
        text = text.decode('utf-8')

    document = types.Document(
        content=text.encode('utf-8'),
        type=enums.Document.Type.PLAIN_TEXT)

    categories = client.classify_text(document).categories

    for category in categories:
        print(u'=' * 20)
        print(u'{:<16}: {}'.format('name', category.name))
        print(u'{:<16}: {}'.format('confidence', category.confidence))

But when I call: classify_text('Hello'), I get:

AttributeError: 'LanguageServiceClient' object has no attribute 'classify_text'

I can't seem to find any questions here on SO about this error. Does anyone know what's happening here?


Solution

  • The version I was using, 0.29, was deprecated. The current version is 1.1 and the correct function is the following:

    def classify(text, verbose=True):
        """Classify the input text into categories. """
    
        language_client = language.LanguageServiceClient()
    
        document = language.types.Document(
            content=text,
            type=language.enums.Document.Type.PLAIN_TEXT)
        response = language_client.classify_text(document)
        categories = response.categories
    
        result = {}
    
        for category in categories:
            # Turn the categories into a dictionary of the form:
            # {category.name: category.confidence}, so that they can
            # be treated as a sparse vector.
            result[category.name] = category.confidence
    
        if verbose:
            print(text)
            for category in categories:
                print(u'=' * 20)
                print(u'{:<16}: {}'.format('category', category.name))
                print(u'{:<16}: {}'.format('confidence', category.confidence))
    
        return result
    

    That function is found here, but the function I mistakenly used is found here