I have a generator function which works fine. I have a large list of .txt files in which each file is also quite long. The task would now be to write a generator function which Takes:
my code now:
data_files_generator <- function(train_set) {
files <- train_set
next_file <- 0
function() {
# move to the next file (note the <<- assignment operator)
next_file <<- next_file + 1
# if we've exhausted all of the files then start again at the
# beginning of the list (keras generators need to yield
# data infinitely -- termination is controlled by the epochs
# and steps_per_epoch arguments to fit_generator())
if (next_file > length(files))
{next_file <<- 1}
# determine the file name
file <- files[[next_file]]
text <- read_lines(paste(data_dir, file, sep = "" )) %>%
str_to_lower() %>%
str_c(collapse = "\n") %>%
removeNumbers() %>%
tokenize_characters(strip_non_alphanum = FALSE, simplify = TRUE)
text <- text[text %in% chars]
dataset <- map(
seq(1, length(text) - maxlen - 1, by = 3),
~list(sentece = text[.x:(.x + maxlen - 1)], next_char = text[.x + maxlen])
)
dataset <- transpose(dataset)
# Vectorization
x <- array(0, dim = c(length(dataset$sentece), maxlen, length(chars)))
y <- array(0, dim = c(length(dataset$sentece), length(chars)))
for(i in 1:length(dataset$sentece)){
x[i,,] <- sapply(chars, function(x){
as.integer(x == dataset$sentece[[i]])
})
y[i,] <- as.integer(chars == dataset$next_char[[i]])
}
rounded_dim <- floor(dim(x)[1]/mini_batch_size)
match_size_to_batch <- 128 * rounded_dim
x <- x[1:match_size_to_batch, 1:maxlen, 1:length(chars)]
y <- y_val[1:match_size_to_batch, 1:length(chars)]
return(list(x, y))
}
}
So what is coming is coming in is a Text file which is transformed into smaller pieces of text (of length maxlen
) and is then one hot encoded into 0 and 1 matrices.
The problem is that from my code the output is one Data Cube of size maxlen x lenght(chars) x samples
where the number of samples is very big and that why I would like my generator function to output always a cube of size maxlen x lenght(chars) x samples(128)
and then output the next batch of size maxlen x lenght(chars) x samples
until the whole text file is read in and then go to the next text file...
The output for now is an error:
Error in py_call_impl(callable, dots$args, dots$keywords) :
ValueError: Cannot feed value of shape (112512, 40, 43) for Tensor 'lstm_layer_input_1:0', which has shape '(128, 40, 43)'
hope I have explained it good enough to understand. I think I have to input some kind of for loop to iterate over the sample length but I have no Idea how to include this into the gen. function.
I have implemented an for loop which is returning now batches of size 128:
Changed Code:
data_files_generator <- function(train_set) {
files <- train_set
next_file <- 0
function() {
# move to the next file (note the <<- assignment operator)
next_file <<- next_file + 1
# if we've exhausted all of the files then start again at the
# beginning of the list (keras generators need to yield
# data infinitely -- termination is controlled by the epochs
# and steps_per_epoch arguments to fit_generator())
if (next_file > length(files))
{next_file <<- 1}
# determine the file name
file <- files[[next_file]]
text <- read_lines(paste(data_dir, file, sep = "" )) %>%
str_to_lower() %>%
str_c(collapse = "\n") %>%
removeNumbers() %>%
tokenize_characters(strip_non_alphanum = FALSE, simplify = TRUE)
text <- text[text %in% chars]
dataset <- map(
seq(1, length(text) - maxlen - 1, by = 3),
~list(sentece = text[.x:(.x + maxlen - 1)], next_char = text[.x + maxlen])
)
dataset <- transpose(dataset)
# Vectorization
x <- array(0, dim = c(length(dataset$sentece), maxlen, length(chars)))
y <- array(0, dim = c(length(dataset$sentece), length(chars)))
for(i in 1:length(dataset$sentece)){
x[i,,] <- sapply(chars, function(x){
as.integer(x == dataset$sentece[[i]])
})
y[i,] <- as.integer(chars == dataset$next_char[[i]])
}
rounded_dim <- floor(dim(x)[1]/mini_batch_size)
match_size_to_batch <- 128 * rounded_dim
x <- x[1:match_size_to_batch, 1:maxlen, 1:length(chars)]
y <- y_val[1:match_size_to_batch, 1:length(chars)]
#Edit:
span_start <-1
for (iter in 1:rounded_dim){
i <- iter * 128
span_end <- iter * 128
x <- x[span_start:span_end, 1:maxlen, 1:length(chars)]
y <- y[span_start:span_end, 1:length(chars)]
span_start <- i
return(list(x, y))
}
}
}