I am trying to implement a bernoulli mixture and was wondering how to vectorize the calculations correctly without looping.
I have tried various versions of apply but can't get the desired output (dim = c(5,4,2). Should my component parameters be in a list instead of a matrix?
set.seed(123)
#Data
X <- matrix(sample(c(0,1), 20, replace = TRUE, prob = c(.6, .4)),
nrow = 5, ncol = 4)
#Params
parameters <- matrix(runif(8), nrow = 2, ncol = 4)
#Would like to vectorize this
dbinom(X, 1, parameters[1,], log = TRUE)
dbinom(X, 1, parameters[2,], log = TRUE)
We loop through the rows of parameters
with apply
and apply the dbinom
out1 <- do.call(`c`, apply(parameters, 1, function(x)
list(dbinom(X, 1, x, log = TRUE))))
identical(out1[[1]], dbinom(X, 1, parameters[1,], log = TRUE))
#[1] TRUE
identical(out1[[2]], dbinom(X, 1, parameters[2,], log = TRUE))
#[1] TRUE
Or using pmap
library(purrr)
out2 <- pmap(list(x = list(X), size = 1, prob = split(parameters,
row(parameters)), log = TRUE), dbinom)
identical(out1, out2)
#[1] TRUE