I'm supposed to write a .grammar file for MiniPython using Sablecc. I'm getting these shift/reduce conflicts:
shift/reduce conflict in state [stack: TIf PTpower *] on TMult in {
[ PMltp = * TMult PTopower Mltp ] (shift)
[ PMlpt = * ] followed by TMult (reduce)
}
shift/reduce conflict in state [stack: TIf PTopower *] on TDiv in {
[ PMltp = * TDiv PTopower Mltp ] (shift)
[ PMltp = * ] followed by TDiv (reduce)
}
Some of the tokens are:
id = letter (letter | digit)*;
digit = ['0' .. '9'];
letter = ['a' .. 'z']|['A' .. 'Z'];
pow = '**';
mult = '*';
div = '/';
plus = '+';
minus = '-';
assert = 'assert';
l_par = '(';
r_par = ')';
l_bra = '[';
r_bra = ']';
Part of my .grammar file is this:
expression = multiplication exprsn;
exprsn = {addition} plus multiplication exprsn
| {subtraction} minus multiplication exprsn
| {empty};
topower = something tpwr;
tpwr = {topower} pow something tpwr
| {empty};
multiplication = topower mltp;
mltp = {multiplication} mult topower mltp
| {division} div topower mltp
| {empty};
something = {id} id
| {parexp} l_par expression r_par
| {fcall} functioncall
| {value} value
| {list} id l_bra expression r_bra
| {other} l_bra value comval* r_bra
| {assert} assert expression comexpr?;
comexpr = comma expression;
This is the grammar after I tried to eliminate left recursion. I noticed that if I remove the assert
rule from the something
production, I get no conflicts. Also, removing the {empty}
rules from exprsn
, tpwr
and mltp
rules gives me no conflicts but I don't think this is the correct way to resolve this.
Any tips would be really appreciated.
UPDATE: Here is the whole grammar, before removing left recursion, as requested:
Package minipython;
Helpers
digit = ['0' .. '9'];
letter = ['a' .. 'z']|['A' .. 'Z'];
cr = 13;
lf = 10;
all = [0..127];
eol = lf | cr | cr lf ;
not_eol = [all - [cr + lf]];
Tokens
tab = 9;
plus = '+';
dot = '.';
pow = '**';
minus = '-';
mult = '*';
div = '/';
eq = '=';
minuseq = '-=';
diveq = '/=';
exclam = '!';
def = 'def';
equal = '==';
nequal = '!=';
l_par = '(';
r_par = ')';
l_bra = '[';
r_bra = ']';
comma= ',';
qmark = '?';
gqmark = ';';
assert = 'assert';
if = 'if';
while = 'while';
for = 'for';
in = 'in';
print = 'print';
return = 'return';
importkn = 'import';
as = 'as';
from = 'from';
less = '<';
great = '>';
true = 'true';
semi = ':';
false = 'false';
quote = '"';
blank = (' ' | lf | cr);
line_comment = '#' not_eol* eol;
number = digit+ | (digit+ '.' digit+);
id = letter (letter | digit)*;
string = '"'not_eol* '"';
cstring = ''' letter ''';
Ignored Tokens
blank, line_comment;
Productions
program = commands*;
commands = {stmt} statement
| {func} function;
function = def id l_par argument? r_par semi statement;
argument = id eqval? ceidv*;
eqval = eq value;
ceidv = comma id eqval?;
statement = {if} tab* if comparison semi statement
| {while} tab* while comparison semi statement
| {for} tab* for [id1]:id in [id2]:id semi statement
| {return} tab* return expression
| {print} tab* print expression comexpr*
| {assign} tab* id eq expression
| {minassign} tab* id minuseq expression
| {divassign} tab* id diveq expression
| {list} tab* id l_bra [ex1]:expression r_bra eq [ex2]:expression
| {fcall} tab* functioncall
| {import} import;
comexpr = comma expression;
expression = {multiplication} multiplication
| {addition} expression plus multiplication
| {subtraction} expression minus multiplication;
topower = {smth} something
| {power} topower pow something;
something = {id} id
| {parexp} l_par expression r_par
| {fcall} functioncall
| {value} value
| {list} id l_bra expression r_bra
| {assert} assert expression comexpr?
| {other} l_bra value comval* r_bra;
comval = comma value;
multiplication = {power} topower
| {multiplication} multiplication mult topower
| {division} multiplication div topower;
import = {import} importkn module asid? comod*
| {from} from module importkn id asid? comid*;
asid = as id;
comod = comma module asid?;
comid = comma id asid?;
module = idot* id;
idot = id dot;
comparison = {true} true
| {false} false
| {greater} [ex1]:expression great [ex2]:expression
| {lesser} [ex1]:expression less [ex2]:expression
| {equals} [ex1]:expression equal [ex2]:expression
| {nequals} [ex1]:expression nequal [ex2]:expression;
functioncall = id l_par arglist? r_par;
arglist = expression comexpr*;
value = {fcall} id dot functioncall
| {numb} number
| {str} string
| {cstr} cstring;
The shift/reduce conflict now is:
shift/reduce conflict in state [stack: TIf PTopower *] on TPow in {
[ PMultiplication - PTopower * ] followed by TPow (reduce),
[ PTopower = PTopower * TPow PSomething ] (shift)
}
(Note: this answer has been drawn from the original grammar, not from the attempt to remove left-recursion, which has additional issues. There is no need to remove left-recursion from a grammar being provided to an LALR(1) parser generator like SableCC.)
Indeed, the basic problem is the production:
something = {assert} assert expression comexpr?
This production is curious, partly because the name of the non-terminal ("something") provides no hint whatsoever as to what it is, but mostly because one would normally expect assert expression
to be a statement, not part of an expression. And something
is clearly derived from expression
:
expression = multiplication
multiplication = topower
topower = something
But the assert
production ends with an expression
. That leads to an ambiguity, since
assert 4 + 3
could be parsed as: (some steps omitted for succinctness):
expression = expression plus multiplication
| | |
V | |
something | |
| | |
V | |
assert expression | |
| | | |
| V V V
assert 4 + 3
Or, more naturally, as:
expression = something
|
V
assert expression
| |
| V
| expression plus multiplication
| | | |
| V V V
assert 4 + 3
The first parse seems unlikely because assert
doesn't (as far as I would guess) actually return a value. (Although the second one would be more natural if the operator were a comparison rather than an addition.)
Without seeing the definition of the language you're trying to parse, I can't really provide a concrete suggestion for how to fix this, but my inclination would be to make assert
a statement, and rename something
to something more descriptive ("term" is common, although I usually use "atom").