pythonnumpyimage-processingvectorizationimage-morphology

numpy vectorize / more efficient for loop


I am performing erosion on an image. The image has been padded accordingly. In a nutshell, I have a cross element(+) that I put on every pixel of the image and pick the lowest value for that pixel from pixel above, below, right, left and itself.

It is inefficient and I can't figure out a vectorized version. It must be possible since all calculations are done independently of each other.

for y in range(t,image.shape[0]-b):
    for x in range(l,image.shape[1]-r):
        a1 = numpy.copy(str_ele)
        for filter_y in range(a1.shape[0]):
            for filter_x in range(a1.shape[1]):
                if (not (numpy.isnan(a1[filter_y][filter_x]))):
                    a1[filter_y][filter_x] = str_ele[filter_y][filter_x]*image[y+(filter_y-str_ele_center_y)][x+(filter_x-str_ele_center_x)]
        eroded_image[y][x] = numpy.nanmin(a1)   

basically:

Every pixel in final image = min(pixel, above, below, left, right) from the original image

 for y in range(len(eroded_image)):
     for x in range(len(eroded_image[1])):
         eroded_image2[y][x] = numpy.nanmin(str_ele*image2[y:y+len(str_ele),x:x+(len(str_ele[1]))])

This is what I now have. Still 2 loops.


Solution

  • If image is a NaN-padded array, and you are eroding with a cross-shaped footprint, you could remove the for-loops by stacking slices of image (to effectively shift the image up, left, right, and down) and then apply np.nanmin to the stack of slices.

    import numpy as np
    
    def orig(image):
        t, l, b, r = 1, 1, 1, 1
        str_ele = np.array([[np.nan, 1, np.nan], [1, 1, 1], [np.nan, 1, np.nan]], dtype='float')
        str_ele_center_x, str_ele_center_y = 1, 1
        eroded_image = np.full_like(image, dtype='float', fill_value=np.nan)
        for y in range(t,image.shape[0]-b):
            for x in range(l,image.shape[1]-r):
                a1 = np.copy(str_ele)
                for filter_y in range(a1.shape[0]):
                    for filter_x in range(a1.shape[1]):
                        if (not (np.isnan(a1[filter_y][filter_x]))):
                            a1[filter_y][filter_x] = str_ele[filter_y][filter_x]*image[y+(filter_y-str_ele_center_y)][x+(filter_x-str_ele_center_x)]
                eroded_image[y][x] = np.nanmin(a1)   
        return eroded_image
    
    def erode(image):
        result = np.stack([image[1:-1, 1:-1], image[2:, 1:-1], image[:-2, 1:-1], image[1:-1, 2:], image[1:-1, :-2]])
        eroded_image = np.full_like(image, dtype='float', fill_value=np.nan)
        eroded_image[1:-1, 1:-1] = np.nanmin(result, axis=0)
        return eroded_image
    
    image = np.arange(24).reshape(4,6)
    image = np.pad(image.astype(float), 1, mode='constant', constant_values=np.nan)
    

    yields

    In [228]: erode(image)
    Out[228]: 
    array([[nan, nan, nan, nan, nan, nan, nan, nan],
           [nan,  0.,  0.,  1.,  2.,  3.,  4., nan],
           [nan,  0.,  1.,  2.,  3.,  4.,  5., nan],
           [nan,  6.,  7.,  8.,  9., 10., 11., nan],
           [nan, 12., 13., 14., 15., 16., 17., nan],
           [nan, nan, nan, nan, nan, nan, nan, nan]])
    

    For the small example image above, erode appears to be around 33x faster than orig:

    In [23]: %timeit erode(image)
    10000 loops, best of 3: 35.6 µs per loop
    
    In [24]: %timeit orig(image)
    1000 loops, best of 3: 1.19 ms per loop
    
    In [25]: 1190/35.6
    Out[25]: 33.42696629213483