pythonpython-3.xpython-dataclasses

Python dataclass from a nested dict


The standard library in 3.7 can recursively convert a dataclass into a dict (example from the docs):

from dataclasses import dataclass, asdict
from typing import List

@dataclass
class Point:
     x: int
     y: int

@dataclass
class C:
     mylist: List[Point]

p = Point(10, 20)
assert asdict(p) == {'x': 10, 'y': 20}

c = C([Point(0, 0), Point(10, 4)])
tmp = {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}
assert asdict(c) == tmp

I am looking for a way to turn a dict back into a dataclass when there is nesting. Something like C(**tmp) only works if the fields of the data class are simple types and not themselves dataclasses. I am familiar with jsonpickle, which however comes with a prominent security warning.


EDIT:

Answers have suggested the following libraries:


Solution

  • Below is the CPython implementation of asdict ā€“ or specifically, the internal recursive helper function _asdict_inner that it uses:

    # Source: https://github.com/python/cpython/blob/master/Lib/dataclasses.py
    
    def _asdict_inner(obj, dict_factory):
        if _is_dataclass_instance(obj):
            result = []
            for f in fields(obj):
                value = _asdict_inner(getattr(obj, f.name), dict_factory)
                result.append((f.name, value))
            return dict_factory(result)
        elif isinstance(obj, tuple) and hasattr(obj, '_fields'):
            # [large block of author comments]
            return type(obj)(*[_asdict_inner(v, dict_factory) for v in obj])
        elif isinstance(obj, (list, tuple)):
            # [ditto]
            return type(obj)(_asdict_inner(v, dict_factory) for v in obj)
        elif isinstance(obj, dict):
            return type(obj)((_asdict_inner(k, dict_factory),
                              _asdict_inner(v, dict_factory))
                             for k, v in obj.items())
        else:
            return copy.deepcopy(obj)
    

    asdict simply calls the above with some assertions, and dict_factory=dict by default.

    How can this be adapted to create an output dictionary with the required type-tagging, as mentioned in the comments?


    1. Adding type information

    My attempt involved creating a custom return wrapper inheriting from dict:

    class TypeDict(dict):
        def __init__(self, t, *args, **kwargs):
            super(TypeDict, self).__init__(*args, **kwargs)
    
            if not isinstance(t, type):
                raise TypeError("t must be a type")
    
            self._type = t
    
        @property
        def type(self):
            return self._type
    

    Looking at the original code, only the first clause needs to be modified to use this wrapper, as the other clauses only handle containers of dataclass-es:

    # only use dict for now; easy to add back later
    def _todict_inner(obj):
        if is_dataclass_instance(obj):
            result = []
            for f in fields(obj):
                value = _todict_inner(getattr(obj, f.name))
                result.append((f.name, value))
            return TypeDict(type(obj), result)
    
        elif isinstance(obj, tuple) and hasattr(obj, '_fields'):
            return type(obj)(*[_todict_inner(v) for v in obj])
        elif isinstance(obj, (list, tuple)):
            return type(obj)(_todict_inner(v) for v in obj)
        elif isinstance(obj, dict):
            return type(obj)((_todict_inner(k), _todict_inner(v))
                             for k, v in obj.items())
        else:
            return copy.deepcopy(obj)
    

    Imports:

    from dataclasses import dataclass, fields, is_dataclass
    
    # thanks to Patrick Haugh
    from typing import *
    
    # deepcopy 
    import copy
    

    Functions used:

    # copy of the internal function _is_dataclass_instance
    def is_dataclass_instance(obj):
        return is_dataclass(obj) and not is_dataclass(obj.type)
    
    # the adapted version of asdict
    def todict(obj):
        if not is_dataclass_instance(obj):
             raise TypeError("todict() should be called on dataclass instances")
        return _todict_inner(obj)
    

    Tests with the example dataclasses:

    c = C([Point(0, 0), Point(10, 4)])
    
    print(c)
    cd = todict(c)
    
    print(cd)
    # {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}
    
    print(cd.type)
    # <class '__main__.C'>
    

    Results are as expected.


    2. Converting back to a dataclass

    The recursive routine used by asdict can be re-used for the reverse process, with some relatively minor changes:

    def _fromdict_inner(obj):
        # reconstruct the dataclass using the type tag
        if is_dataclass_dict(obj):
            result = {}
            for name, data in obj.items():
                result[name] = _fromdict_inner(data)
            return obj.type(**result)
    
        # exactly the same as before (without the tuple clause)
        elif isinstance(obj, (list, tuple)):
            return type(obj)(_fromdict_inner(v) for v in obj)
        elif isinstance(obj, dict):
            return type(obj)((_fromdict_inner(k), _fromdict_inner(v))
                             for k, v in obj.items())
        else:
            return copy.deepcopy(obj)
    

    Functions used:

    def is_dataclass_dict(obj):
        return isinstance(obj, TypeDict)
    
    def fromdict(obj):
        if not is_dataclass_dict(obj):
            raise TypeError("fromdict() should be called on TypeDict instances")
        return _fromdict_inner(obj)
    

    Test:

    c = C([Point(0, 0), Point(10, 4)])
    cd = todict(c)
    cf = fromdict(cd)
    
    print(c)
    # C(mylist=[Point(x=0, y=0), Point(x=10, y=4)])
    
    print(cf)
    # C(mylist=[Point(x=0, y=0), Point(x=10, y=4)])
    

    Again as expected.