The below code breaks the sentence into individual tokens and the output is as below
"cloud" "computing" "is" "benefiting" " major" "manufacturing" "companies"
import en_core_web_sm
nlp = en_core_web_sm.load()
doc = nlp("Cloud computing is benefiting major manufacturing companies")
for token in doc:
print(token.text)
What I would ideally want is, to read 'cloud computing' together as it is technically one word.
Basically I am looking for a bi gram. Is there any feature in Spacy that allows Bi gram or Tri grams ?
Spacy allows the detection of noun chunks. So to parse your noun phrases as single entities do this:
Detect the noun chunks https://spacy.io/usage/linguistic-features#noun-chunks
Merge the noun chunks
Do dependency parsing again, it would parse "cloud computing" as single entity now.
>>> import spacy
>>> nlp = spacy.load('en')
>>> doc = nlp("Cloud computing is benefiting major manufacturing companies")
>>> list(doc.noun_chunks)
[Cloud computing, major manufacturing companies]
>>> for noun_phrase in list(doc.noun_chunks):
... noun_phrase.merge(noun_phrase.root.tag_, noun_phrase.root.lemma_, noun_phrase.root.ent_type_)
...
Cloud computing
major manufacturing companies
>>> [(token.text,token.pos_) for token in doc]
[('Cloud computing', 'NOUN'), ('is', 'VERB'), ('benefiting', 'VERB'), ('major manufacturing companies', 'NOUN')]