rlme4mumin

dredge doesn't work when specifying glmer optimizer


I am trying to use dredge from the R package MuMIn with a global binomial glmer model. I find that I need to specify the optimizer with control = glmerControl(optimizer="bobyqa") for convergence. However, when I go to use dredge, I get an error. If I reduce the number of predictors in the model, I can remove the bobyqa specification, get convergence, and use dredge. Any way I can get dredge to go with glmerControl(optimizer="bobyqa")?

test.glob=glmer(exploitpark~X + as.factor(Y) + Z + A + B + (1|ID), 
                family=binomial(), 
                glmerControl(optimizer="bobyqa"), data=df)
options(na.action = "na.fail")   #  prevent fitting models to different datasets
test.Set = dredge(test.glob, beta=c("partial.sd"), extra = c("R^2"))

Fixed term is "(Intercept)"

Error in glm.control(optimizer = c("bobyqa", "bobyqa"), calc.derivs = TRUE, : unused arguments (optimizer = c("bobyqa", "bobyqa"), calc.derivs = TRUE, use.last.params = FALSE, restart_edge = FALSE, boundary.tol = 1e-05, tolPwrss = 1e-07, compDev = TRUE, nAGQ0initStep = TRUE, checkControl = list(check.nobs.vs.rankZ = "ignore", check.nobs.vs.nlev = "stop", check.nlev.gtreq.5 = "ignore", check.nlev.gtr.1 = "stop", check.nobs.vs.nRE = "stop", check.rankX = "message+drop.cols", check.scaleX = "warning", check.formula.LHS = "stop", check.response.not.const = "stop"), checkConv = list(check.conv.grad = list( action = "warning", tol = 0.001, relTol = NULL), check.conv.singular = list(action = "message", tol = 1e-04), check.conv.hess = list(action = "warning", tol = 1e-06)), optCtrl = list())


Solution

  • tl;dr probably a bug in MuMIn::dredge() - I'm still digging - but it seems to work OK if you leave out the extra="R^2" specification.

    reproducible example

    set.seed(101)
    dd <- data.frame(x1=rnorm(200),x2=rnorm(200),x3=rnorm(200),
                     f=factor(rep(1:10,each=20)),
                     n=50)
    library(lme4)
    dd$y <- simulate(~x1+x2+x3+(1|f),
                     family=binomial,
                     weights=dd$n,
                     newdata=dd,
                     newparams=list(beta=c(1,1,1,1),
                                    theta=1))[[1]] 
    ## fit model
    m0 <- glmer(y~x1+x2+x3+(1|f),
                family=binomial,
                weights=n,
                data=dd,
                na.action="na.fail")
    

    now try glmer()+dredge(), with and without optimizer specification

    library(MuMIn)
    d0 <- dredge(m0)
    m1 <- update(m0, control=glmerControl(optimizer="bobyqa"))
    d1 <- dredge(m1)
    

    These all work - so the problem must be with some of the optional arguments. Testing that:

    d0B <- dredge(m0, beta=c("partial.sd"), extra = c("R^2")) ## works
    d1B <- try(dredge(m1, beta=c("partial.sd"), extra = c("R^2"))) ## fails
    

    Which of the extra arguments is the culprit?

    d1C <- dredge(m1, beta=c("partial.sd"))  ## works
    d1D <- try(dredge(m1, extra=c("R^2")))   ## fails
    

    If you really, really want your R^2 values you could download/unpack the source code to the package, edit line 101 of R/r.squaredLR.R as indicated below (add cl$control to the list of elements that are set to NULL, and re-install the package ...

    ===================================================================
    --- R/r.squaredLR.R (revision 443)
    +++ R/r.squaredLR.R (working copy)
    @@ -98,7 +98,7 @@
            if(formulaArgName != "formula")
                names(cl)[names(cl) == formulaArgName] <- "formula"
            cl$formula <- update(as.formula(cl$formula), . ~ 1)
    -       cl$method <- cl$start <- cl$offset <- contrasts <- NULL
    +       cl$method <- cl$start <- cl$offset <- cl$control <- contrasts <- NULL
        }
        cl <- cl[c(TRUE, names(cl)[-1L] %in% names(call2arg(cl)))]
        if(evaluate) eval(cl, envir = envir) else cl