I have a map of string to IO like this Map[String, IO[String]]
, I want to transform it into IO[Map[String, String]]
. How to do it?
You'll have to be a little careful with this one. Maps in Scala are unordered, so if you try to use cats's sequence
like this…
import cats.instances.map._
import cats.effect.IO
import cats.UnorderedTraverse
object Example1 {
type StringMap[V] = Map[String, V]
val m: StringMap[IO[String]] = Map("1" -> IO{println("1"); "1"})
val n: IO[StringMap[String]] = UnorderedTraverse[StringMap].unorderedSequence[IO, String](m)
}
you'll get the following error:
Error: could not find implicit value for evidence parameter of type cats.CommutativeApplicative[cats.effect.IO]
The issue here is that the IO monad is not actually commutative. Here is the definition of commutativity:
map2(u, v)(f) = map2(v, u)(flip(f)) // Commutativity (Scala)
This definition shows that the result is the same even when the effects happen in a different order.
You can make the above code compile by providing an instance of CommutativeApplicative[IO]
but that still doesn't make the IO monad commutative. If you run the following code you can see the side effects are not processed in the same order:
import cats.effect.IO
import cats.CommutativeApplicative
object Example2 {
implicit object FakeEvidence extends CommutativeApplicative[IO] {
override def pure[A](x: A): IO[A] = IO(x)
override def ap[A, B](ff: IO[A => B])(fa: IO[A]): IO[B] =
implicitly[Applicative[IO]].ap(ff)(fa)
}
def main(args: Array[String]): Unit = {
def flip[A, B, C](f: (A, B) => C) = (b: B, a: A) => f(a, b)
val fa = IO{println(1); 1}
val fb = IO{println(true); true}
val f = (a: Int, b: Boolean) => s"$a$b"
println(s"IO is not commutative: ${FakeEvidence.map2(fa, fb)(f).unsafeRunSync()} == ${FakeEvidence.map2(fb, fa)(flip(f)).unsafeRunSync()} (look at the side effects above^^)")
}
}
Which outputs the following:
1
true
true
1
IO is not commutative: 1true == 1true (look at the side effects above^^)
In order to get around this I would suggest making your map something with an order, like a List, where sequence will not require commutativity. The following example is just one way to do this:
import cats.effect.IO
import cats.implicits._
object Example3 {
val m: Map[String, IO[String]] = Map("1" -> IO {println("1"); "1"})
val l: IO[List[(String, String)]] = m.toList.traverse[IO, (String, String)] { case (s, io) => io.map(s2 => (s, s2))}
val n: IO[Map[String, String]] = l.map { _.toMap }
}