The Flutter documentation for InheritedWidget says
Base class for widgets that efficiently propagate information down the tree.
To obtain the nearest instance of a particular type of inherited widget from > a build context, use BuildContext.inheritFromWidgetOfExactType.
Inherited widgets, when referenced in this way, will cause the consumer to rebuild when the inherited widget itself changes state.
Given that widgets in Flutter are immutable, and in the example code..
class FrogColor extends InheritedWidget {
const FrogColor({
Key key,
@required this.color,
@required Widget child,
}) : assert(color != null),
assert(child != null),
super(key: key, child: child);
final Color color;
static FrogColor of(BuildContext context) {
return context.inheritFromWidgetOfExactType(FrogColor);
}
@override
bool updateShouldNotify(FrogColor old) => color != old.color;
}
the color property is final
so cannot be reassigned. Assuming this widget is right at the top of the tree, as in most examples, when will this ever be useful. For the widget to be replaced, a new instance will have to be created.
Presumably where this is done, a new instance of whatever is passed as child will be created too, causing that child's descendants to also rebuild, creating new instances of its childresn etc..
Ending up with the whole tree rebuilt anyway. So the selective updating applied by using inheritFromWidgetOfExactType
is pointless, when the data of an instance of InheritedWidget will never change for that instance?
Edit:
This is the simplest example of what I don't understand that I can put together.
In this example, the only way to "change" the InheritedWidget/FrogColor
which is near the root of the application is to have its parent (MyApp
) rebuild. This causes it to rebuild its children and create a new instance of FrogColor
and which gets passed a new child instance. I don't see any other way that the InheritedWidget/FrogColor
would change its state as in the documentation
... will cause the consumer to rebuild when the inherited widget itself changes state.
import 'package:flutter/material.dart';
import 'dart:math';
void main() {
runApp(MyApp());
}
class FrogColor extends InheritedWidget {
const FrogColor({
Key key,
@required this.color,
@required Widget child,
}) : assert(color != null),
assert(child != null),
super(key: key, child: child);
final Color color;
static FrogColor of(BuildContext context) {
return context.inheritFromWidgetOfExactType(FrogColor);
}
@override
bool updateShouldNotify(FrogColor old) => color != old.color;
}
class MyApp extends StatefulWidget {
// This widget is the root of your application.
MyAppState createState() => MyAppState();
}
class MyAppState extends State<MyApp>
{
@override
Widget build(BuildContext context) {
var random = Random(DateTime.now().millisecondsSinceEpoch);
return FrogColor(
color : Color.fromARGB(255,random.nextInt(255),random.nextInt(255),random.nextInt(255)),
child:MaterialApp(
title: 'Flutter Demo',
home: Column (
children: <Widget>[
WidgetA(),
Widget1(),
FlatButton(
child:Text("set state",style:TextStyle(color:Colors.white)),
onPressed:() => this.setState((){})
)
]
)
)
);
}
}
class WidgetA extends StatelessWidget {
@override
Widget build(BuildContext context) {
print("Ran Build ${this.runtimeType.toString()}");
return WidgetB();
}
}
class WidgetB extends StatelessWidget {
@override
Widget build(BuildContext context) {
print("Ran Build ${this.runtimeType.toString()}");
return Text("SomeText",style:TextStyle(color:FrogColor.of(context).color));
}
}
class Widget1 extends StatelessWidget {
@override
Widget build(BuildContext context) {
print("Ran Build ${this.runtimeType.toString()}");
return Widget2();
}
}
class Widget2 extends StatelessWidget {
@override
Widget build(BuildContext context) {
print("Ran Build ${this.runtimeType.toString()}");
return Text("SomeText",style:TextStyle(color:FrogColor.of(context).color));
}
}
Further, the output of this is
I/flutter (24881): Ran Build WidgetA
I/flutter (24881): Ran Build WidgetB
I/flutter (24881): Ran Build Widget1
I/flutter (24881): Ran Build Widget2
So all the child widgets are always rebuilt. Making the registration done in inheritFromWidgetOfExactType pointless also.
Edit2:
In response to @RémiRousselet answer in the comments, modifying the above example, something like
class MyAppState extends State<MyApp>
{
Widget child;
MyAppState()
{
child = MaterialApp(
title: 'Flutter Demo',
home: Column (
children: <Widget>[
WidgetA(),
Widget1(),
FlatButton(
child:Text("set state",style:TextStyle(color:Colors.white)),
onPressed:() => this.setState((){})
)
]
)
);
}
@override
Widget build(BuildContext context) {
var random = Random(DateTime.now().millisecondsSinceEpoch);
return FrogColor(
color : Color.fromARGB(255,random.nextInt(255),random.nextInt(255),random.nextInt(255)),
child: child
);
}
}
works by storing the tree that shouldn't be modified outside of the build function so that the same child tree is passed to the InhertedWidget on each rebuild. This does work only causing the rebuild of the widgets that have registered with inheritFromWidgetOfExactType to get rebuilt, but not the others.
Although @RémiRousselet says it is incorrect to store the subtree as part of the state, I do not believe there is any reason that this is not ok, and infact they do this in some google tutorial videos. Here She has a subtree created and held as part of the state. In her case 2 StatelessColorfulTile() widgets.
Presumably where this is done, a new instance of whatever is passed as a child will be created too, causing that child's descendants to also rebuild, creating new instances of its children etc..
Ending up with the whole tree rebuilt anyway.
That's where your confusion comes from
A widget rebuilding doesn't force its descendants to rebuild.
When a parent rebuild, the framework internally check if newChild == oldChild
, in which case the child is not rebuilt.
As such, if the instance of a widget didn't change, or if it overrides
operator==
then it is possible for a widget to not rebuild when its parent is updated.
This is also one of the reasons why AnimatedBuilder
offer a child
property:
AnimatedBuilder(
animation: animation,
builder: (context, child) {
return Container(child: child,);
},
child: Text('Hello world'),
);
This ensures that when for the whole duration of the animation, child
is preserved and therefore not rebuilt. Leading to a much more optimized UI.