pythonout-of-memorydifferential-equationsintegrator

Fixing an integrator


I'm trying to solve a system of differential equations using Python. I've written an algorithm that uses Euler's Method to do so, and I require a time step of 10^-6 s-1, for 100s. That is 10^8 data points, and the computer returns a MemoryError.

The code I have is:

#!/usr/bin/env python3

import matplotlib.pyplot as plt
import math
import numpy as np

k1 = 1.34
k2 = 1.6E+9
k3 = 8E+3
k4 = 4E+7
k5 = 1

def f_A(A,Y):
    return -k1*A*Y

def f_B(B,X):
    return -k3*X*B

def f_X(X,Y,A,B):
    return k1*A*Y - k2*X*Y + k3*B*X - k4*X*X 

def f_Y(X,Y,Z,A):
    return -k1*A*Y - k2*X*Y + k5*Z

def f_Z(X,Z,B):
    return -k5*Z + k3*B*X

def f_P(X,Y,A):
    return k1*A*Y + k2*X*Y

def f_Q(X):
    return k4*X*X

def Euler(fA,fB,fX,fY,fZ,fP,fQ,t0,tt,n):
    h = (tt - t0) / float(n)

    t = [0]*(n)
    X = [0]*(n)
    Y = [0]*(n)
    Z = [0]*(n)
    P = [0]*(n)
    Q = [0]*(n)
    A = [0]*(n)
    B = [0]*(n)

    t[0] = t0
    X[0] = 10**-9.8
    Y[0] = 10**-6.52
    Z[0] = 10**-7.32
    A[0] = 0.06
    B[0] = 0.06
    P[0] = 0
    Q[0] = 0

    for i in range(1,n):

        t[i] = t0 + i*h

        X[i] = X[i-1] + h*fX(X[i-1],Y[i-1],A[i-1],B[i-1])

        Y[i] = Y[i-1] + h*fY(X[i-1],Y[i-1], Z[i-1], A[i-1])

        Z[i] = Z[i-1] + h*fZ(X[i-1],Z[i-1],B[i-1])

        A[i] = A[i-1] + h*fA(A[i-1],Y[i-1])

        B[i] = B[i-1] + h*fB(B[i-1],X[i-1])

        P[i] = P[i-1] + h*fP(X[i-1],Y[i-1],A[i-1])

        Q[i] = Q[i-1] + h*fQ(X[i-1])

    t_new = t[0::100]
    X_new = X[0::100]
    Y_new = Y[0::100]
    Z_new = Z[0::100]


    plt.figure(figsize=(10, 4))
    plt.yscale('log')
    plt.plot(t_new, X_new, label = 'X')
    plt.plot(t_new, Y_new, label = 'Y')
    plt.plot(t_new, Z_new, label = 'Z')
    plt.xlabel('time / s')
    plt.ylabel('concentration')
    plt.legend()
    plt.show()

t_0 = 0
t_t = 100 
m = 10**8

Euler(f_A,f_B,f_X,f_Y,f_Z,f_P,f_Q,t_0,t_t,m)

The _new lists are used to help plotting, so as to avoid overloading Matplotlib. Does anyone have any advice on how I can avoid the memory error while still maintaining the required time-step?

PS as part of the project, it is required that I write my own integrator.


Solution

  • I would suggest not trying to keep every iteration of every variable at each time step in memory. You should simply have a 'current' and 'next' version of each variable, update them each time step, and then 'save' the state every 1,000,000 time steps or so. Try something like this:

    def Euler(fA,fB,fX,fY,fZ,fP,fQ,t0,tt,n):
        num_samples = 100
    
        h = (tt - t0) / float(n)
    
        # initialise variables
        t = t0
        X = 10**-9.8
        ...
    
        # initialise _samples lists
        t_samples = []
        X_samples = []
        Y_samples = []
        Z_samples = []
    
        for i in range(1,n):
            # save the state once every (n / num_samples) time steps
            if i % (n / num_samples) == 0:
                t_samples.append(t)
                X_samples.append(X)
                Y_samples.append(Y)
                Z_samples.append(Z)
    
            # compute the next version of each variable
            t_ = t0 + i*h
            X_ = X + h*fX(X, Y, A, B)
            ...
    
            # update the variables
            t, X, Y, Z, A, B, P, Q = t_, X_, Y_, Z_, A_, B_, P_, Q_
    
        # plot using _samples lists
        ...