I am following this Link to implement a cDCGAN on my own dataset. My dataset contains almost 391510 images. The image size of my dataset is 64 whereas the MNIST used in this link is 28. My dataset has 2350 labels where as the MNIST dataset has 10.
My dataset is in .tfrecords format so i am using a get_image() function to retrieve batch of images and labels from it as shown below. When i run my code i get the following error
`tensorflow.python.framework.errors_impl.InternalError: Dst tensor is not initialized.
[[Node: _arg_Placeholder_3_0_3/_43 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_2488__arg_Placeholder_3_0_3", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[Node: discriminator_1/batch_normalization/AssignMovingAvg_1/_86 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_2364_discriminator_1/batch_normalization/AssignMovingAvg_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]`
When i searched about this error i found that if the batch size is large then it happens so i changed my batch size to 32 and then i got this new error.
` tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[32,64,64,2351] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[Node: discriminator/concat = ConcatV2[N=2, T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](_arg_Placeholder_0_0/_41, _arg_Placeholder_3_0_3/_43, discriminator/concat/axis)]]
Caused by op 'discriminator/concat', defined at:
File "cdcgan.py", line 221, in <module>
D_real, D_real_logits = discriminator(x, y_fill, isTrain)
File "cdcgan.py", line 48, in discriminator
cat1 = tf.concat([x, y_fill], 3)
`
My code section where i change the default code is below
IMAGE_WIDTH = 64
IMAGE_HEIGHT = 64
# G(z)
def generator(x, y_label, isTrain=True, reuse=False):
with tf.variable_scope('generator', reuse=reuse):
# initializer
w_init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02)
b_init = tf.constant_initializer(0.0)
# concat layer
cat1 = tf.concat([x, y_label], 3)
# 1st hidden layer
deconv1 = tf.layers.conv2d_transpose(cat1, 256, [16, 16], strides=(1, 1), padding='valid', kernel_initializer=w_init, bias_initializer=b_init)
lrelu1 = lrelu(tf.layers.batch_normalization(deconv1, training=isTrain), 0.2)
# 2nd hidden layer
deconv2 = tf.layers.conv2d_transpose(lrelu1, 128, [5, 5], strides=(2, 2), padding='same', kernel_initializer=w_init, bias_initializer=b_init)
lrelu2 = lrelu(tf.layers.batch_normalization(deconv2, training=isTrain), 0.2)
# output layer
deconv3 = tf.layers.conv2d_transpose(lrelu2, 1, [5, 5], strides=(2, 2), padding='same', kernel_initializer=w_init, bias_initializer=b_init)
o = tf.nn.tanh(deconv3)
return o
# D(x)
def discriminator(x, y_fill, isTrain=True, reuse=False):
with tf.variable_scope('discriminator', reuse=reuse):
# initializer
w_init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02)
b_init = tf.constant_initializer(0.0)
# concat layer
cat1 = tf.concat([x, y_fill], 3)
# 1st hidden layer
conv1 = tf.layers.conv2d(cat1, 128, [5, 5], strides=(2, 2), padding='same', kernel_initializer=w_init, bias_initializer=b_init)
lrelu1 = lrelu(conv1, 0.2)
# 2nd hidden layer
conv2 = tf.layers.conv2d(lrelu1, 256, [5, 5], strides=(2, 2), padding='same', kernel_initializer=w_init, bias_initializer=b_init)
lrelu2 = lrelu(tf.layers.batch_normalization(conv2, training=isTrain), 0.2)
# output layer
conv3 = tf.layers.conv2d(lrelu2, 1, [16, 16], strides=(1, 1), padding='valid', kernel_initializer=w_init)
o = tf.nn.sigmoid(conv3)
return o, conv3
def get_image(files, num_classes):
"""This method defines the retrieval image examples from TFRecords files.
Here we will define how the images will be represented (grayscale,
flattened, floating point arrays) and how labels will be represented
(one-hot vectors).
"""
# Convert filenames to a queue for an input pipeline.
file_queue = tf.train.string_input_producer(files)
# Create object to read TFRecords.
reader = tf.TFRecordReader()
# Read the full set of features for a single example.
key, example = reader.read(file_queue)
# Parse the example to get a dict mapping feature keys to tensors.
# image/class/label: integer denoting the index in a classification layer.
# image/encoded: string containing JPEG encoded image
features = tf.parse_single_example(
example,
features={
'image/class/label': tf.FixedLenFeature([], tf.int64),
'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
default_value='')
})
label = features['image/class/label']
image_encoded = features['image/encoded']
# Decode the JPEG.
image = tf.image.decode_jpeg(image_encoded, channels=1)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.reshape(image, [IMAGE_WIDTH*IMAGE_HEIGHT])
# Represent the label as a one hot vector.
label = tf.stack(tf.one_hot(label, num_classes))
return label, image
# training parameters
batch_size = 32
# lr = 0.0002
train_epoch = 30
global_step = tf.Variable(0, trainable=False)
lr = tf.train.exponential_decay(0.0002, global_step, 500, 0.95, staircase=True)
# load MNIST
#mnist = input_data.read_data_sets("MNIST_data/", one_hot=True, reshape=[])
SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
# Default paths.
DEFAULT_LABEL_FILE = os.path.join(SCRIPT_PATH, './labels.txt')
DEFAULT_TFRECORDS_DIR = os.path.join(SCRIPT_PATH, 'tfrecords-output')
MODEL_NAME = 'hangul_tensorflow'
IMAGE_WIDTH = 64
IMAGE_HEIGHT = 64
DEFAULT_NUM_TRAIN_STEPS = 117453 # (for 30 epochs as my training set is 391510)
"""Perform graph definition and model training.
Here we will first create our input pipeline for reading in TFRecords
files and producing random batches of images and labels.
"""
labels = io.open(DEFAULT_LABEL_FILE, 'r', encoding='utf-8').read().splitlines()
num_classes = len(labels)
print('Processing data...')
tf_record_pattern = os.path.join(DEFAULT_TFRECORDS_DIR, '%s-*' % 'train')
train_data_files = tf.gfile.Glob(tf_record_pattern)
label, image = get_image(train_data_files, num_classes)
# Associate objects with a randomly selected batch of labels and images.
image_batch, label_batch = tf.train.shuffle_batch(
[image, label], batch_size=batch_size,
capacity=2000,
min_after_dequeue=1000)
# variables : input
x = tf.placeholder(tf.float32, shape=(None, img_size, img_size, 1))
z = tf.placeholder(tf.float32, shape=(None, 1, 1, 100))
y_label = tf.placeholder(tf.float32, shape=(None, 1, 1, 2350))
y_fill = tf.placeholder(tf.float32, shape=(None, img_size, img_size, 2350))
isTrain = tf.placeholder(dtype=tf.bool)
# Initialize the queue threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# training-loop
print('training start!')
for epoch in range(train_epoch):
G_losses = []
D_losses = []
for iter in range(117453): #steps for 1 epoch
# update discriminator
train_images, train_labels = sess.run([image_batch, label_batch])
x_ = train_images.reshape(-1, img_size, img_size, 1)
y_label_ = train_labels.reshape([batch_size, 1, 1, 2350])
y_fill_ = y_label_ * np.ones([batch_size, img_size, img_size, 2350])
z_ = np.random.normal(0, 1, (batch_size, 1, 1, 100))
loss_d_, _ = sess.run([D_loss, D_optim], {x: x_, z: z_, y_fill: y_fill_, y_label: y_label_, isTrain: True})
# update generator
z_ = np.random.normal(0, 1, (batch_size, 1, 1, 100))
y_ = np.random.randint(0, 9, (batch_size, 1))
y_label_ = onehot[y_.astype(np.int32)].reshape([batch_size, 1, 1, 2350])
y_fill_ = y_label_ * np.ones([batch_size, img_size, img_size, 2350])
loss_g_, _ = sess.run([G_loss, G_optim], {z: z_, x: x_, y_fill: y_fill_, y_label: y_label_, isTrain: True})
These are my system specs
name: GeForce GTX 1070 major: 6 minor: 1 memoryClockRate(GHz): 1.645 pciBusID: 0000:01:00.0 totalMemory: 8.00GiB freeMemory: 6.62GiB
How can i resolve my problem?
So after searching my self i came to a solution. I applied some tricks from this answer. I reduced my batch size from 32 to 16 which resulted in slow training but i had to make some trade off :). I also changed the structure of D and G by reducing the no. of neurons in hidden layers. And lastly i applied some tensorflow memory allocation tips from this answer above that helped me.
I hope my answer can help beginners like me.