pythonscikit-learnscipyarffpython-zipfile

Reading ARFF from ZIP with zipfile and scipy.io.arff


I want to process quite big ARFF files in scikit-learn. The files are in a zip archive and I do not want to unpack the archive to a folder before processing. Hence, I use the zipfile module of Python 3.6:

from zipfile import ZipFile
from scipy.io.arff import loadarff

archive = ZipFile( 'archive.zip', 'r' )
datafile = archive.open( 'datafile.arff' )
data = loadarff( datafile )
# …
datafile.close()
archive.close()

However, this yields the following error:

Traceback (most recent call last):
  File "./m.py", line 6, in <module>
    data = loadarff( datafile )
  File "/usr/lib64/python3.6/site-packages/scipy/io/arff/arffread.py", line 541, in loadarff
    return _loadarff(ofile)
  File "/usr/lib64/python3.6/site-packages/scipy/io/arff/arffread.py", line 550, in _loadarff
    rel, attr = read_header(ofile)
  File "/usr/lib64/python3.6/site-packages/scipy/io/arff/arffread.py", line 323, in read_header
    while r_comment.match(i):
TypeError: cannot use a string pattern on a bytes-like object

According to loadarff documentation, loadarff requires a file-like object. According to zipfile documentation, open returns a file-like ZipExtFile.

Hence, my question is how to use what ZipFile.open returns as the ARFF input to loadarff.

Note: If I unzip manually and load the ARFF directly with data = loadarff( 'datafile.arff' ), all is fine.


Solution

  • from io import BytesIO, TextIOWrapper
    from zipfile import ZipFile
    from scipy.io.arff import loadarff
    
    zfile = ZipFile('archive.zip', 'r')
    in_mem_fo = TextIOWrapper(BytesIO(zfile.read('datafile.arff')), encoding='utf-8')
    data = loadarff(in_mem_fo)
    

    Read zfile into a in-memory BytesIO object. Use TextIOWrapper with encoding='utf-8'. Use this in-memory buffered text object in loadarff.

    Edit: Turnsout zfile.open() returns a file-like object so the above can be accomplished by :

    zfile = ZipFile('archive.zip', 'r')
    in_mem_fo = TextIOWrapper(zfile.open('datafile.arff'), encoding='ascii')
    data = loadarff(in_mem_fo)
    

    Thanks @Bernhard